早教吧 育儿知识 作业答案 考试题库 百科 知识分享

海伦公式还可以怎样表示啊好象是三斜求积术也就是求海伦公式的等效公式不是把把海伦公式变形~

题目详情
海伦公式还可以怎样表示啊 好象是三斜求积术 也就是求海伦公式的等效公式 不是把把海伦公式变形~
▼优质解答
答案和解析
1、先来看海伦公式:三角形面积S=√[P(P-A)(P-B)(P-C)],
其中P=(A+B+C)/2
A、B、C表示三角形的边长,√表示根号,即紧跟后面的括号内的全部数开根号.
2、再来看海伦公式的变形(以下所有式中的^表示平方)
S=√[P(P-A)(P-B)(P-C)]
=(1/4)√[(A+B+C)(A+B-C)(A+C-B)(B+C-A)] 变形1
=(1/4)√{[(A+B)^-C^][C^-(A-B)^]} 变形2
=(1/4)√{(A^+B^-C^+2AB)[-(A^+B^-C^-2AB)]} 变形3
=(1/4)√[4A^B^-(A^+B^-C^)^] 变形4
3、画一个三角形(在这儿不好画,你自己画一个吧),三边分别为
A、B、C.A为底边.过顶点作与A垂直的高H,把A分成两部分X、Y
根据勾股定理可得以下三式:
X=A-Y 第1式
H^=B^-Y^ 第2式
H^=C^-X^ 第3式
根据第2、3式可得B^-Y^=C^-X^ 第4式
把第1式的X=A-Y代入第4式并化简可得
Y=(A^-C^+B^)/2A 第5式
根据第2式可得
H=√(B^-Y^)
=√[B^-(A^-C^+B^)/4A^]
={√[4A^B^-(A^-C^+B^)^]}/2A
三角形面积S=(1/2)*AH
=(1/2)*A*{√[4A^B^-(A^-C^+B^)^]}/2A
=(1/4)√[4A^B^-(A^+B^-C^)^ ]
这个等式就是海伦公式的变形4,故得证.
太难打字了,给点分吧,好辛苦啊.