早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知AD和BC交于点O,且△OAB和△OCD均为等边三角形,以OD和OB为边作平行四边形ODEB,连接AC、AE和CE,CE和AD相交于点F.求证:△ACE为等边三角形.

题目详情
如图,已知AD和BC交于点O,且△OAB和△OCD均为等边三角形,以OD和OB为边作平行四边形ODEB,连接AC、AE和CE,CE和AD相交于点F.
求证:△ACE为等边三角形.
▼优质解答
答案和解析
证明:∵△OAB和△OCD为等边三角形,
∴CD=OD,OB=AB,∠ADC=∠ABO=60°.
∵四边形ODEB是平行四边形,
∴OD=BE,OB=DE,∠CBE=∠EDO.
∴CD=BE,AB=DE,∠ABE=∠CDE.
∴△ABE≌△EDC.
∴AE=CE,∠AEB=∠ECD.
∵BE∥AD,
∴∠AEB=∠EAD.
∴∠EAD=∠ECD.
在△AFE和△CFD中
又∵∠AFE=∠CFD,
∴∠AEC=∠ADC=60°.
∴△ACE为等边三角形.