早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}为等差数列,数列{bn}为等比数列,满足b1=a2=2,a5+a9=14,b4=a15+1(I)求数列{an},{bn}通项公式;(II)令cn=an•bn,求数列{cn}的前n项和Tn.

题目详情
已知数列{an}为等差数列,数列{bn}为等比数列,满足b1=a2=2,a5+a9=14,b4=a15+1
(I)求数列{an},{bn}通项公式;
(II)令cn=an•bn,求数列{cn}的前n项和Tn
▼优质解答
答案和解析
(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,
∵a2=2,a5+a9=14,
∴a1+d=2,2a1+12d=14,解得a1=d=1.
∴an=1+(n-1)=n.
∴b1=a2=2,b4=a15+1=16=2×q3
∴q=2.
∴bn=2n
(2)cn=an•bn=n•2n
∴数列{cn}的前n项和Tn=2+2×22+3×23+…+n•2n
2Tn=22+2×23+…+(n-1)•2n+n•2n+1
∴-Tn=2+22+…+2n-n•2n+1=
2(2n-1)
2-1
-n•2n+1=(1-n)•2n+1-2.
∴Tn=(n-1)•2n+1+2.