早教吧作业答案频道 -->其他-->
已知正方形ABCD和正方形EBGF共顶点B,连AF,H为AF的中点,连EH,正方形EBGF绕点B旋转.(1)如图1,当F点落在BC上时,求证:EH=12FC;(2)如图2,当点E落在BC上时,连BH,若AB=5,BG=2,求BH的长
题目详情
已知正方形ABCD和正方形EBGF共顶点B,连AF,H为AF的中点,连EH,正方形EBGF绕点B旋转.
(1)如图1,当F点落在BC上时,求证:EH=
FC;
(2)如图2,当点E落在BC上时,连BH,若AB=5,BG=2,求BH的长;
(3)当正方形EBGF绕点B旋转到如图3的位置时,求
的值.
(1)如图1,当F点落在BC上时,求证:EH=
1 |
2 |
(2)如图2,当点E落在BC上时,连BH,若AB=5,BG=2,求BH的长;
(3)当正方形EBGF绕点B旋转到如图3的位置时,求
EH |
CF |
▼优质解答
答案和解析
(1)证明:延长FE交AB于点Q,如图1,
∵四边形EFBG是正方形,
∴EF=EB,∠EFB=∠EBF=45°.
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC.
∴∠BQF=∠QBE=45°.
∴QE=EB.
∴QE=EF.
∵AH=FH,
∴HE=
AQ.
∵∠BQF=∠BFQ=45°,
∴BQ=BF.
∵AB=BC,
∴AQ=CF.
∴HE=
CF.
(2)延长EH交AB于点N,如图2,
∵四边形BEFG是正方形,
∴EF∥BG,EF=EB=BG=2.
∵EF∥AG,
∴∠FEH=∠ANH,∠EFH=∠NAH.
在△ANH和△FEH中,
∴△ANH≌△FEH.
∴NH=EH,AN=EF.
∵AB=5,AN=EF=2,
∴BN=AB-AN=3.
∵∠NBE=90°,BE=2,BN=3,
∴EN=
=
.
∵∠NBE=90°,EH=NH,
∴BH=
EN=
.
∴BH的值为
.
(3)过点A作EF平行线交EB的延长线于点T,
延长EH交AT于S,连接SB、EC,如图3,
∵EF∥AS,
∴∠FEH=∠ASH,∠EFH=∠SA
∵四边形EFBG是正方形,
∴EF=EB,∠EFB=∠EBF=45°.
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC.
∴∠BQF=∠QBE=45°.
∴QE=EB.
∴QE=EF.
∵AH=FH,
∴HE=
1 |
2 |
∵∠BQF=∠BFQ=45°,
∴BQ=BF.
∵AB=BC,
∴AQ=CF.
∴HE=
1 |
2 |
(2)延长EH交AB于点N,如图2,
∵四边形BEFG是正方形,
∴EF∥BG,EF=EB=BG=2.
∵EF∥AG,
∴∠FEH=∠ANH,∠EFH=∠NAH.
在△ANH和△FEH中,
|
∴△ANH≌△FEH.
∴NH=EH,AN=EF.
∵AB=5,AN=EF=2,
∴BN=AB-AN=3.
∵∠NBE=90°,BE=2,BN=3,
∴EN=
22+32 |
13 |
∵∠NBE=90°,EH=NH,
∴BH=
1 |
2 |
| ||
2 |
∴BH的值为
| ||
2 |
(3)过点A作EF平行线交EB的延长线于点T,
延长EH交AT于S,连接SB、EC,如图3,
∵EF∥AS,
∴∠FEH=∠ASH,∠EFH=∠SA
看了 已知正方形ABCD和正方形E...的网友还看了以下:
什么是标准状态我看百科是说每种气体组分分压为一标准气压.那么反应A(s)+B(g)=C(g)+D( 2020-05-13 …
已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20 2020-05-13 …
A.G的列数与行数相同B.G的列的上界与G的行的上界相同C.G的列的上界与G的行的下界相同D.G的列 2020-05-26 …
急求在4L密闭容器中充入6molA气体和5molB气体在4L密闭容器中充入6molA气体和5mol 2020-06-23 …
f(x),g(x),h(x)在[a,b]上连续,(a,b)上可导,求证存在一个e属于(a,b)使得 2020-07-16 …
已知定义在正实数集上的函数f(x)=1/2x^2+2ax,g(x)=3a^2Inx+b,a,b属于 2020-07-30 …
非空集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G;(2)存在e∈G,都有a⊕e= 2020-08-01 …
高数问题,急求设函数fx,gx在(a,b)上连续且可导,在(a,.b〉内二介可导,且存在相等的最大值 2020-11-03 …
设函数fx,gx在(a,b)上连续且可导,在(a,.b〉内二介可导,且存在相等的最大值,f(a)=g 2020-11-03 …
可逆反应A(s)=B(g)+C(g)平衡常数K=c(B)*c(C),保持温度不变缩小容器体积,重新平 2020-12-05 …