早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,作∠DAF=90°,且AF=AD,过点F作EF∥AD,且EF=AF,联结CF,CE.(1)求证:FC⊥BC;(2)如果BD=AC,求证:点C在线段DE的垂直平分线上.

题目详情
如图,已知在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,作∠DAF=90°,且AF=AD,过点F作EF∥AD,且EF=AF,联结CF,CE.
作业帮
(1)求证:FC⊥BC;
(2)如果BD=AC,求证:点C在线段DE的垂直平分线上.
▼优质解答
答案和解析
(1)∵∠BAC=∠DAF=90°,
∴∠BAC-∠DAC=∠DAF-∠DAC,
即∠BAD=∠CAF,
又∵AB=AC,AD=AF,
∴△ABD≌△ACF,
∴∠B=∠ACF,
∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°,
∴∠ACF=∠B=45°,
∴∠BCF=90°,
∴FC⊥BC;
(2)∵△ABD≌△ACF,
∴BD=FC,
又∵BD=AC,
∴AC=FC,
∴∠CAF=∠CFA,
∵∠DAF=90°,EF∥AD,
∴∠DAF=∠AFE=90°,
∴∠DAC=∠EFC,
∵AD=AF,EF=AF,
∴AD=FE,
∴△ADC≌△FEC,
∴CD=CE,
∴点C在线段DE的垂直平分线上.