早教吧作业答案频道 -->其他-->
已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.(Ⅰ)求x0的值;(Ⅱ)若f(x0)=1,且对任意n∈N*,有an=f()+1,
题目详情
已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(Ⅰ)求x0的值;(Ⅱ)若f(x0)=1,且对任意n∈N*,有an=f()+1,求{an}的通项公式;
(Ⅲ)若数列{bn}满足bn=2loan+1,将数列{bn}的项重新组合成新数列{cn},具体法则如下:c1=b1,c2=b2+b3,c3=b4+b5+b6,…,求证:+++…+<.
(Ⅰ)求x0的值;(Ⅱ)若f(x0)=1,且对任意n∈N*,有an=f()+1,求{an}的通项公式;
(Ⅲ)若数列{bn}满足bn=2loan+1,将数列{bn}的项重新组合成新数列{cn},具体法则如下:c1=b1,c2=b2+b3,c3=b4+b5+b6,…,求证:+++…+<.
▼优质解答
答案和解析
(Ⅰ)令x1=x2=0,得f(x0)=-f(0),①
令x1=1,x2=0,得f(x0)=f(x0)+f(1)+f(0),∴f(1)=-f(0)②
由①、②得f(x0)=f(1),又因为f(x)为单调函数,∴x0=1…(2分)
(Ⅱ)由(1)得f(x1+x2)=f(x1)+f(x2)+1,,∴,a1=1
,…(3分)…(4分)∴,…(5分)
(Ⅲ)bn=2loan+1=2n+1…(6分)
由{Cn}的构成法则可知,Cn应等于{bn}中的n项之和,其第一项的项数为
[1+2+…+(n-1)]+1=+1,即这一项为2×[+1]-1=n(n-1)+1
Cn=n(n-1)+1+n(n-1)+3+…+n(n-1)+2n-1=n2(n-1)+=n3 …(8分)
1
当n≥3时,…(10分)
∴:+++…+<
…(12分)
令x1=1,x2=0,得f(x0)=f(x0)+f(1)+f(0),∴f(1)=-f(0)②
由①、②得f(x0)=f(1),又因为f(x)为单调函数,∴x0=1…(2分)
(Ⅱ)由(1)得f(x1+x2)=f(x1)+f(x2)+1,,∴,a1=1
,…(3分)…(4分)∴,…(5分)
(Ⅲ)bn=2loan+1=2n+1…(6分)
由{Cn}的构成法则可知,Cn应等于{bn}中的n项之和,其第一项的项数为
[1+2+…+(n-1)]+1=+1,即这一项为2×[+1]-1=n(n-1)+1
Cn=n(n-1)+1+n(n-1)+3+…+n(n-1)+2n-1=n2(n-1)+=n3 …(8分)
1
当n≥3时,…(10分)
∴:+++…+<
…(12分)
看了 已知定义在R上的单调函数f(...的网友还看了以下:
向量解最值二维向量数量积求最值:例1.设:x,y∈R+,且x+2y=10,求函数w=x2+y2的最 2020-05-14 …
已知n∈(0,1),函数f(x)=x2+x+n有零点的概率为( )A. 78B. 14C. 12 2020-05-17 …
仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式 2020-06-16 …
已知关于x的方程4x2-8nx-3n=2和x2-(n+3)x-2n2+2=0.问是否存在这样的n的 2020-07-12 …
仔细阅读下面例题,解答问题:例题:已知关于x的多项式x2-4x+m有一个因式是(x+3),求另一个 2020-07-19 …
已知定义在R上的单调函数f(x),存在实数x,使得对于任意实数x1,x2,总有f(xx1+xx2) 2020-07-20 …
已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0 2020-07-20 …
仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式 2020-07-22 …
仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式 2020-07-31 …
已知下列n(n为正整数)个关于x的一元二次方程:x2-1=0(1)x2+x-2=0(2)x2+2x 2020-08-03 …