早教吧 育儿知识 作业答案 考试题库 百科 知识分享

将△ABC绕点B逆时针旋转α(0°<α<180°)得到△DBE,直线DE与直线AC相交于点F,连接BF.(1)如图1,若α=60°,DF=2AF,请直接写AFBF等于;(2)若DF=mAF,(m>0,且m≠1)①如图2,求AFBF;

题目详情
将△ABC绕点B逆时针旋转α(0°<α<180°)得到△DBE,直线DE与直线AC相交于点F,连接BF.
(1)如图1,若α=60°,DF=2AF,请直接写
AF
BF
等于______;
(2)若DF=mAF,(m>0,且m≠1)
①如图2,求
AF
BF
;(用含α,m的式子表示)
②如图3,依题意补全图形,请直接写出
AF
BF
等于
2
m+1
sin
α
2
2
m+1
sin
α
2
.(用含α,m的式子表示)
▼优质解答
答案和解析
(1)连接AD,G是DF的中点,连接AG,
∵∠BAC=∠BDE,
∴∠ABD=∠AFG=60°,
∵DF=2AF,
∴AF=GF,
∴AG=AF=GF=DG,
∴∠ADG=∠DAG=30°,
∵AB=DB,∠ABD=60°,
∴△ABD是等边三角形,
∴∠ABD=60°,BD=AD,
∴∠ADF=∠BDF=30°,
在△BDF与△ADF中
BD=AD
∠BDF=∠ADF
DF=DF

∴△BDF≌△ADF(SAS),
∴AF=BF,
AF
BF
=1.
故答案为1.

(2)①如图2,在DF上截取DG=AF,连接BG,
由旋转知,DB=AB,∠D=∠A,
在△DBG与△ABF中
BD=AB
∠D=∠A
DG=AF

∴△DBG≌△ABF(SAS),
∴BG=BF,∠GBF=α,
过点B作BN⊥GF于点N,
∴点N为GF中点,∠FBN=
α
2

在RT△BNF中,NF=BF•sin
α
2

∴GF=2BF•sin
α
2

∵DF=DG+GF,
∴mAF=AF+2BF•sin
α
2

∴(m-1)AF=2BF•sin
α
2

AF
BF
=
2
m−1
sin
α
2


②如图3,依题意补全的图形,
延长FD到G,使DG=AF,连接BG,
由旋转知,DB=AB,∠BDG=∠BAF,
∴△DBG≌△ABF(SAS),
∴BG=BF,∠GBF=α,
过点B作BN⊥GF于点N,
∴点N为GF中点,∠FBN=
α
2

在RT△BNF中,NF=BF•sin
作业帮用户 2017-09-24
问题解析
(1)连接AD,G是DF的中点,连接AG,然后证得△ABD和△AGF是等边三角形,再证得△BDF≌△ADF,得出BF=AF即可求得;
(2)①在DF上截取DG=AF,连接BG,由旋转知,DB=AB,∠D=∠A,从而证得△DBG≌△ABF,然后通过解直角三角形即可求得;
②延长FD到G,使DG=AF,连接BG,先证得△DBG≌△ABF,然后解直角三角形即可求得;
名师点评
本题考点:
几何变换综合题.
考点点评:
本题考查了旋转的性质,等边三角形的判定和性质,三角形全等的判定和性质,应用直角三角函数解直角三角形等,本题的根据是构建直角三角形,通过解直角三角形求得结果.
我是二维码 扫描下载二维码
看了 将△ABC绕点B逆时针旋转α...的网友还看了以下:

读图完成28-29题.以上气候资料与青岛最接近的是()A.A图B.B图C.C图D.D图  2020-05-02 …

小组同学分别用如图所示装置(夹持仪器已略去)做收集并检验二氧化碳性质的实验.连接A、B装置时,应将  2020-05-13 …

物体A、B质量分别为10kg和5kg.它们由轻绳连接静止在水平面上如图所示.当B受到水平拉力F以后  2020-05-17 …

某控制电路的一个封闭部件上,有三个接线柱A、B、C和电灯、电铃各一只.连接A、C灯亮,铃不响;连接  2020-06-30 …

某控制电路的一个封闭部件上有三个接线柱A、B、C,灯泡、电铃各一只,电源(处于内部),如图所示.用  2020-06-30 …

如图所示的方框内有一节电池,一个小电铃,若干导线.当A、B、C、D上什么都不接,铃不响.当用导线连  2020-07-08 …

如图为一封闭的控制盒,a、b、c为三个接线柱,M、N分别是电灯和电铃,现用导线连接a、b时,灯亮铃  2020-07-08 …

某控制电路的一个封闭部件内有电源、电灯、电铃各一只,外有三个接线柱A、B、C(如图所示).用导线连  2020-07-12 …

如图所示,有一个封闭的黑箱子,其内部有一与箱盖上的电铃和灯泡连接的部分电路,箱盖上三个接线柱A、B  2020-07-12 …

如图所示的某段电路中,A、B、C、D、E是四个接线柱.A接电源的负极,E接电源的正极.(1)用导线  2020-07-29 …