早教吧作业答案频道 -->其他-->
(2012•内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何
题目详情
(2012•内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.
(1)求证:四边形ABCD是正方形;
(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.
(1)求证:四边形ABCD是正方形;
(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.
▼优质解答
答案和解析
(1)证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,
∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,
∵∠BAE=∠BCE,∠AED=∠CED,
∴∠CBE=∠ABE,
∵四边形ABCD是矩形,
∴∠ABC=∠BCD=∠BAD=90°,AB=CD,
∴∠CBE=∠ABE=45°,
∴△ABD与△BCD是等腰直角三角形,
∴AB=AD=BC=CD,
∴四边形ABCD是正方形;
(2)当AE=2EF时,FG=3EF.
证明:∵四边形ABCD是正方形,
∴AB∥CD,AD∥BC,
∴△ABE∽△FDE,△ADE∽△GBE,
∵AE=2EF,
∴BE:DE=AE:EF=2,
∴BG:AD=BE:DE=2,
即BG=2AD,
∵BC=AD,
∴CG=AD,
∵△ADF∽△GCF,
∴FG:AF=CG:AD,
即FG=AF=AE+EF=3EF.
∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,
∵∠BAE=∠BCE,∠AED=∠CED,
∴∠CBE=∠ABE,
∵四边形ABCD是矩形,
∴∠ABC=∠BCD=∠BAD=90°,AB=CD,
∴∠CBE=∠ABE=45°,
∴△ABD与△BCD是等腰直角三角形,
∴AB=AD=BC=CD,
∴四边形ABCD是正方形;
(2)当AE=2EF时,FG=3EF.
证明:∵四边形ABCD是正方形,
∴AB∥CD,AD∥BC,
∴△ABE∽△FDE,△ADE∽△GBE,
∵AE=2EF,
∴BE:DE=AE:EF=2,
∴BG:AD=BE:DE=2,
即BG=2AD,
∵BC=AD,
∴CG=AD,
∵△ADF∽△GCF,
∴FG:AF=CG:AD,
即FG=AF=AE+EF=3EF.
看了 (2012•内江)如图,四边...的网友还看了以下:
E是平行四边形ABCD对角线交点,过点A,B,C,D,E分别向直线l引垂线,垂足分别为E是平行四边形 2020-03-31 …
几个初一的数学题(急)关于三角形的外角1.在三角形ABC中,角B的平分线与角BAC的外角平分线相交 2020-05-14 …
如图直线y=-x+3交x轴于B,交y于C,顶点为E的抛物线y=-x2+bx+c经过BC两点,与x轴 2020-05-16 …
已知,如图,圆D交Y轴于点A,B,交X轴的负半轴于点C,OD=1,过点C的直线Y=-2√2 X-8 2020-05-16 …
已知,如图,圆D交Y轴于点A,B,交X轴的负半轴于点C,OD=1,过点C的直线Y=-2√2 X-8 2020-05-16 …
如图,正方形ABCD的对角线AC、BD相交于点O,正方形A′B′C′D′的顶点A′与点O重合,A′ 2020-06-15 …
如图,已知抛物线与x轴相交于A,B两点,与y轴相交于点C(0,-3),且顶点D的坐标为(1,-4) 2020-08-01 …
已知四边形ABCD外接圆⊙O的半径为2,对角线AC与BD的交点为E,AE=EC,AB=√2AE,且 2020-08-01 …
过点a(3,1)的直线与x轴的夹角为135度与y轴的正半轴交与点b直线ac交y轴与点c点c在点b方 2020-08-02 …
已知椭圆方程为B(2,0)过点B作直线l与椭圆交与E、F两点,求三角形OBE与三角形OBF的面积比已 2020-11-27 …