早教吧作业答案频道 -->其他-->
一个高数题求微分方程dy/dx=1/(x-y)+1.解:设u=x-y,则dy/dx=1-du/dx代入原方程的1-du/dx=1/u+1==>du/dx=-1/u==>udu=-dx==>u²=-2x+C(C是积分常数)==>(x-y)²+2x=C故原微分方程的通解是(x-y)²+2x=C(C是积分常
题目详情
一个高数题
求微分方程 dy/dx= 1/(x-y)+1 .
解:设u=x-y,则dy/dx=1-du/dx
代入原方程的1-du/dx=1/u+1
==>du/dx=-1/u
==>udu=-dx
==>u²=-2x+C (C是积分常数)
==>(x-y)²+2x=C
故原微分方程的通解是(x-y)²+2x=C (C是积分常数).
想知道第一步是怎么推出来的,设u=x-y如何他推出dy/dx=1-du/dx
求微分方程 dy/dx= 1/(x-y)+1 .
解:设u=x-y,则dy/dx=1-du/dx
代入原方程的1-du/dx=1/u+1
==>du/dx=-1/u
==>udu=-dx
==>u²=-2x+C (C是积分常数)
==>(x-y)²+2x=C
故原微分方程的通解是(x-y)²+2x=C (C是积分常数).
想知道第一步是怎么推出来的,设u=x-y如何他推出dy/dx=1-du/dx
▼优质解答
答案和解析
设 u=x-y,则
du = dx-dy,
这样
du/dx = 1-dy/dx,
移项,即得
dy/dx = 1-du/dx。
du = dx-dy,
这样
du/dx = 1-dy/dx,
移项,即得
dy/dx = 1-du/dx。
看了 一个高数题求微分方程dy/d...的网友还看了以下: