早教吧作业答案频道 -->数学-->
分式方程问题:解方程:[x+1)/(x+2)]+[(x+6)/(x+7)]=[(x+2)/(x+3)]+[(x+5)/(x+6)]
题目详情
分式方程问题:解方程:[x+1)/(x+2)]+[(x+6)/(x+7)]=[(x+2)/(x+3)]+[(x+5)/(x+6)]
▼优质解答
答案和解析
分析题可以看出规律为,各项的分子均比分母小1,因此各项均可化为
1-[1/原分母]的形式,以(x+1)/(x+2)为例即:
(x+1)/(x+2)=(x+2-1)/(x+2)=[(x+2)-1]/(x+2)
=1-[1/(x+2)]
因此,整道题可化为:
1-[1/(x+2)]+1-[1/(x+7)]=1-[1/(x+3)]+1-[1/(x+6)]
[1/(x+2)]+[1/(x+7)]=[1/(x+3)]+[1/(x+6)]
两边通分后可得:
x+2+x+7/(x+2)(x+7)=x+3+x+6/(x+3)(x+6)
2(x+3)/(x+2)(x+7)=2(x+3)/(x+3)(x+6)
若x+3不为0,分子相同且不为0,分式相同则分母必相同
(x+3)(x+6)=(x+2)(x+7)
x*x+9x+18=x*x+9x+14,无解
若x+3为0,仍然无解,因为它会使分母为0,整个分式无意义
1-[1/原分母]的形式,以(x+1)/(x+2)为例即:
(x+1)/(x+2)=(x+2-1)/(x+2)=[(x+2)-1]/(x+2)
=1-[1/(x+2)]
因此,整道题可化为:
1-[1/(x+2)]+1-[1/(x+7)]=1-[1/(x+3)]+1-[1/(x+6)]
[1/(x+2)]+[1/(x+7)]=[1/(x+3)]+[1/(x+6)]
两边通分后可得:
x+2+x+7/(x+2)(x+7)=x+3+x+6/(x+3)(x+6)
2(x+3)/(x+2)(x+7)=2(x+3)/(x+3)(x+6)
若x+3不为0,分子相同且不为0,分式相同则分母必相同
(x+3)(x+6)=(x+2)(x+7)
x*x+9x+18=x*x+9x+14,无解
若x+3为0,仍然无解,因为它会使分母为0,整个分式无意义
看了 分式方程问题:解方程:[x+...的网友还看了以下: