早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知:如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.(1)求EC:CF的值;(2)延长EF交正方形外角平分线CP于点P(图2),试判断AE与EP的大小关系,并说明理

题目详情
已知:如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.

(1)求EC:CF的值;
(2)延长EF交正方形外角平分线CP于点P(图2),试判断AE与EP的大小关系,并说明理由.
▼优质解答
答案和解析
(1)∵AE⊥EF,
∴∠2+∠3=90°,
∵四边形ABCD为正方形,
∴∠B=∠C=90°,
∴∠1+∠3=90°,∠1=∠2,
∴△ABE∽△ECF,
∴EC:CF=AB:BE=5:2;
(2)在AB上取一点M,使BM=BE,连接ME.
∴AM=CE.
∴∠BME=45°,
∴∠AME=135°.
∵CP是外角平分线,
∴∠DCP=45°,
∴∠ECP=135°.
∴∠AME=∠ECP.
∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△PCE(ASA).
∴AE=EP.