早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设G、M分别为不等边ΔABC的重心与外心,A(-1,0)、B(1,0),GM∥AB.(1)求点C的轨迹方程;(2)设点C的轨迹为曲线E,是否存在直线l,使l过点(0,1)并与曲线E交于P、Q两点,且满足?若存在,求出直

题目详情
设G、M分别为不等边ΔABC的重心与外心,A(-1,0)、B(1,0),GM∥AB.
(1)求点C的轨迹方程;
(2)设点C的轨迹为曲线E,是否存在直线l,使l过点(0,1)并与曲线E交于P、Q两点,且满足?若存在,求出直线l的方程,若不存在,说明理由.
注:三角形的重心的概念和性质如下:设ΔABC的重心,且有.____
▼优质解答
答案和解析
【分析】可设C点的坐标为(x,y),由重心坐标的公式,可得G(),再由外心M在AB的垂直平分线上,而AB所在直线为y=0,外心就落在y轴上,横坐标为零,则可设外心坐标M(0,b),由GM∥AB可得M(0,),由外心定义,CM=AM=BM,AM已经等于Bm了,只需要令CM=AM或者CM=BM即可,代入距离公式可求点C的轨迹方程.
(II)假设存在直线l满足条件,设直线l方程为y=kx+1,,联立直线与椭圆的方程,由,根据方程的根与系数的关系代入可求K
可设C点的坐标为(x,y).
由重心坐标的公式,可得G()
外心M在AB的垂直平分线上,显然AB所在直线为y=0,外心就落在y轴上,横坐标为零.
设外心坐标M(0,b),由GM∥AB可知
∴外心坐标M(0,).
由外心定义,CM=AM=BM,则只需要令CM=AM或者CM=BM即可
不妨CM=AM,

整理可得点C的轨迹方程为x2+
(II)假设存在直线l满足条件,设直线l方程为y=kx+1,
消去x,得(3+k2)x2+2kx-2=0
∵直线l与曲线E并于P、Q两点,
∴Δ=4k2+8(2+k2)>0
设P(x1,y1),Q(x2,y2),则

∴x1x2+y1y2=-2,即x1x2+(kx1+1)(kx2+1)=-2.
(1+k2)x1x2+k(x1+x2)+3=0,(1+k2)
解得k2=7,
∴k=±
故存在直线l:y=±+1,使得
【点评】本题主要考查了三角形的外心与重心性质的应用,点的轨迹方程的求解,直线与椭圆相交关系中的方程的根与系数关系的应用及一定的推理与运算的能力的考查,具有一定的综合性.
看了 设G、M分别为不等边ΔABC...的网友还看了以下:

在平面直角坐标系xOy中,A(2a,0),B(a,0),a为非零常数,动点P满足PA=2PB,记点  2020-05-13 …

在火车车厢内有一水平光滑的桌面,桌面上放一个小球,当火车由静止开始在平直轨道上运动的一小段时间内,  2020-05-14 …

图中A是晨线,B是东经150°经线,据此回答4~5题4.此时正午太阳直射点位于 A.北回归线上 B  2020-05-17 …

坐在高速行驶火车上的乘客,我们说他静止是以下列哪个物体为参照物的()A.迎面开来的火车B.铁轨C.  2020-07-06 …

(2011•台州一模)若长度为定值的线段AB的两端点分别在x轴正半轴和y轴正半轴上移动,O为坐标原  2020-07-30 …

读图,等值线a<b<c。完成下题。(1)如果甲为陆地,乙为海洋,a、b、c为等温线。则图示区域为[]  2020-11-02 …

对位移和路程理解正确的是()A.路程是个标量,表示位移的大小B.位移是个矢量,是由初始位置指向终止位  2020-11-07 …

对位移和路程理解正确的是()A.路程是个标量,表示位移的大小B.位移是个矢量,是由初始位置指向终止位  2020-11-07 …

关于铁道转弯处内外轨道的高度关系,下列说法正确的是()A.内外轨道一样高,以防止列车倾倒造成翻车事故  2020-11-20 …

若长度为定值的线段AB的两端点分别在x轴正半轴和y轴正半轴上移动,O为坐标原点,则△OAB的重心、内  2020-12-02 …