早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设a属于(π/4,3π/4),b属于(0,π/4),cos(a-π/4)=3/5,sin(3π/4+b)=5/13,求sin(a+b)的值.

题目详情
设a属于(π/4,3π/4),b属于(0,π/4),cos(a-π/4)=3/5,sin(3π/4+b)=5/13,求sin(a+b)的值.
▼优质解答
答案和解析
∵cos(a-π/4)=3/5, ∴cos(π/4-a)=3/5,
∵a∈(π/4,3π/4), ∴-π/2<π/4-a<0,
∴sin(π/4-a)=-4/5.
∵sin(3π/4+b)=5/13,∴sin(π/4-b)=5/13,
∵b∈(0,π/4),∴0<π/4-b<π/4,
∴cos(π/4-b)=12/13.
∴sin(a+b)=cos[(π/2)-a-b]
=cos[(π/4-a)+(π/4-b)]
=cos(π/4-a)·cos(π/4-b)-sin(π/4-a)·sin(π/4-b)
=(3/5)×(12/13)-(-4/5)×(5/13)
=56/65.
看了 设a属于(π/4,3π/4)...的网友还看了以下: