早教吧作业答案频道 -->数学-->
设X1=2,Xn+1=2+1/Xn,n>=1,求证当n趋于无穷时,极限Xn存在.
题目详情
设X1=2,Xn+1=2+1/Xn,n>=1,求证当n趋于无穷时,极限Xn存在.
▼优质解答
答案和解析
先求通项吧
我用表示下标.
X=2+1/X,两边同加待定参数q,
X+q=2+q+1/X=[(2+q)X+1]/X,两边取倒数,
1/(X+q)=X/[(2+q)X+1],
1/(X+q)=1/(2+q)*{1/(2+q)^2 / [X+1/(2+q)]},
令q=1/(2+q),可解出q,这里暂不解出.原式变成
1/(X+q)=q-q^2/(X+q),令a=1/(X+q),a=1/(X+q),原式变为
a=q-q^2*a,两边同加p,用待定参数法得到p=-q/(q^2+1)时,a+p是等比数列,公比是-q^2,即
(a+p)=-q^2*(a+p),所以
a+p=(a+p)*(-q^2)^(n-1)
X=1/{[1/(X+q)+p](-q^2)^(n-1)-p}-q.
现在求出q,q=-1+sqrt(2)1,
对于小于1的q,在n趋于无穷时(-q^2)^(n-1)趋于零(有界乘以无穷小还是无穷小),所以
limX=-1/p-q=1/q=1+sqrt(2),
对于大于1的q,在n趋于无穷时(-q^2)^(n-1)趋于无穷大,但因为在分母上,所以整个这一项为零,所以
limX=-q=1+sqrt(2),
结果无论q取哪个解limX都等于1+sqrt(2),即-无穷
我用表示下标.
X=2+1/X,两边同加待定参数q,
X+q=2+q+1/X=[(2+q)X+1]/X,两边取倒数,
1/(X+q)=X/[(2+q)X+1],
1/(X+q)=1/(2+q)*{1/(2+q)^2 / [X+1/(2+q)]},
令q=1/(2+q),可解出q,这里暂不解出.原式变成
1/(X+q)=q-q^2/(X+q),令a=1/(X+q),a=1/(X+q),原式变为
a=q-q^2*a,两边同加p,用待定参数法得到p=-q/(q^2+1)时,a+p是等比数列,公比是-q^2,即
(a+p)=-q^2*(a+p),所以
a+p=(a+p)*(-q^2)^(n-1)
X=1/{[1/(X+q)+p](-q^2)^(n-1)-p}-q.
现在求出q,q=-1+sqrt(2)1,
对于小于1的q,在n趋于无穷时(-q^2)^(n-1)趋于零(有界乘以无穷小还是无穷小),所以
limX=-1/p-q=1/q=1+sqrt(2),
对于大于1的q,在n趋于无穷时(-q^2)^(n-1)趋于无穷大,但因为在分母上,所以整个这一项为零,所以
limX=-q=1+sqrt(2),
结果无论q取哪个解limX都等于1+sqrt(2),即-无穷
看了 设X1=2,Xn+1=2+1...的网友还看了以下:
求解lim(n,+∞>1/n*(e^1/n+e^2/n+…+e^n/n)求详细解题过程谢谢求解li 2020-05-14 …
一道求极限的题,设数列{Xn}的一般项Xn=(cos(nPI/2))/n,求lim(n→∞)Xn= 2020-05-14 …
求渐化式~急已知:p(n)=1/2p(n-1)+1/2p(n-2)求p(n)用n表示由已知可得:p 2020-07-08 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
计算n阶行列式D,其中Xi不等于0,i=1,2,...n,第一行为1,2,...n-1,n+Xn, 2020-07-19 …
(括号表示下标)数列{an}的前n项和为Sn,a1=1,a(n+1)=2Sn(n∈N+)求数列{a 2020-07-29 …
设a>2,给定数列{xn}(n为下标),其中x1=a(1为下标),x(n+1)=xn^2/2(xn 2020-07-29 …
一道高数题,证明f(x)=(1+1/n)^n单调递增且有上界解法里包括这样一段:将Xn=(1+1/ 2020-07-31 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …