早教吧作业答案频道 -->数学-->
正弦定理转换a+c=2R(SinA+SinC)=4/√3Sin((A+C)/2)Cos((A-C)/2)是怎么得到的?
题目详情
正弦定理转换
a+c=2R(SinA+SinC)
=4/√3Sin((A+C)/2)Cos((A-C)/2)
是怎么得到的?
a+c=2R(SinA+SinC)
=4/√3Sin((A+C)/2)Cos((A-C)/2)
是怎么得到的?
▼优质解答
答案和解析
2R=b/sinB
A=(A+C)/2+(A-C)/2
C=(A+C)/2-(A-C)/2
sinA+sinC
=sin[(A+C)/2+(A-C)/2]+sin[(A+C)/2-(A-C)/2]
=sin(A+C)/2cos(A-C)/2+cos(A+C)/2sin(A-C)/2+sin(A+C)/2cos(A-C)/2-cos(A+C)/2sin(A-C)/2
=2sin(A+C)/2cos(A-C)/2
A=(A+C)/2+(A-C)/2
C=(A+C)/2-(A-C)/2
sinA+sinC
=sin[(A+C)/2+(A-C)/2]+sin[(A+C)/2-(A-C)/2]
=sin(A+C)/2cos(A-C)/2+cos(A+C)/2sin(A-C)/2+sin(A+C)/2cos(A-C)/2-cos(A+C)/2sin(A-C)/2
=2sin(A+C)/2cos(A-C)/2
看了 正弦定理转换a+c=2R(S...的网友还看了以下: