早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设关于x的函数f(x)=lg(x2-2x-3)的定义域为集合A,函数g(x)=x-a,(0≤x≤4)的值域为集合B.(1)求集合A,B;(2)若集合A,B满足A∩B=B,求实数a的取值范围.

题目详情
设关于x的函数f(x)=lg(x2-2x-3)的定义域为集合A,函数g(x)=x-a,(0≤x≤4)的值域为集合B.
(1)求集合A,B;   
(2)若集合A,B满足A∩B=B,求实数a的取值范围.
▼优质解答
答案和解析
(1)由题意可知:A={x|x2-2x-3>0}={x|(x-3)(x+1)>0}={x|x<-1或x>3},
由0≤x≤4,得-a≤x-a≤4-a,
∴B={y|-a≤y≤4-a};
(2)∵A∩B=B,∴B⊆A.

∴4-a<-1或-a>3,解得:a>5或a<-3.
∴实数a的取值范围是{a|a>5或a<-3}.