早教吧 育儿知识 作业答案 考试题库 百科 知识分享

将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()A.B.2+C.4+D.

题目详情
将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为( )
A.
B.2+
C.4+
D.
▼优质解答
答案和解析
底面放三个钢球,上再落一个钢球时体积最小,把钢球的球心连接,则又可得到一个棱长为2的小正四面体,正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心应该是重合的,先求出小正四面体的中心到底面的距离,再求出正四面体的中心到底面的距离,把此距离乘以4可得正四棱锥的高.
【解析】
由题意知,底面放三个钢球,上再落一个钢球时体积最小.
于是把钢球的球心连接,则又可得到一个棱长为2的小正四面体,则不难求出这个小正四面体的高为
且由正四面体的性质可知:正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心应该是重合的,
∴小正四面体的中心到底面的距离是  ×=,正四面体的中心到底面的距离是 +1 (1即小钢球的半径),
所以可知正四棱锥的高的最小值为  (+1)×4=4+
故选 C.
看了 将半径都为1的4个钢球完全装...的网友还看了以下: