早教吧 育儿知识 作业答案 考试题库 百科 知识分享

对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C的关联点。已知点D(,),E(0,-2),F(,0)(1)当⊙O的半径为1时

题目详情
对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C 的关联点。已知点D( ),E(0,-2),F( ,0)

(1)当⊙O的半径为1时,
①在点D,E,F中,⊙O的关联点是        
②过点F作直线交y轴正半轴于点G,使∠GFO=30°,若直线上的点P(m,n)是⊙O的关联点,求m的取值范围;
(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围。
▼优质解答
答案和解析
(1)①D,E②0≤m≤ (2)r≥1

(1)①D,E。
②由题意可知,若P要刚好是⊙C的关联点,需要点P到⊙C的两条切线PA和PB之间所夹的角为60°。
由图2可知∠APB=60°,则∠CPB=30°,

连接BC,则
∴若P点为⊙C的关联点,则需点P到圆心的距离d满足0≤d≤2r。
由(1),考虑临界点位置的P点,
如图3,

点P到原点的距离OP=2×1=2,
过点O作x轴的垂线OH,垂足为H,

∴∠OGF=60°。
∴OH=OGsin60°=
∴∠OPH=60°。可得点P 1 与点G重合。
过点P 2 作P2M⊥x轴于点M,可得∠P 2 OM=30°,
∴OM=OP2cos30°=
∴若点P为⊙O的关联点,则P点必在线段P 1 P 2 上。
∴0≤m≤
(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点。
考虑临界情况,如图4,

即恰好E、F点为⊙K的关联时,则KF=2KN= EF=2,此时,r=1。
∴若线段EF上的所有点都是某个圆的关联点,这个圆的半径r的取值范围为r≥1。
(1)①根据关联点的定义,得出E点是⊙O的关联点,进而得出F、D,与⊙O的关系:
如图1所示,过点E作⊙O的切线设切点为R,

∵⊙O的半径为1,∴RO=1。
∵EO=2,∴∠OER=30°。
根据切线长定理得出⊙O的左侧还有一个切点,使得组成的角等于30°。
∴E点是⊙O的关联点。
∵D( ),E(0,-2),F(2 ,0),
∴OF>EO,DO<EO。
∴D点一定是⊙O的关联点,而在⊙O上不可能找到两点使得组成的角度等于60°。故在点D、E、F中,⊙O的关联点是D,E。
②若P要刚好是⊙C的关联点,需要点P到⊙C的两条切线PA和PB之间所夹的角为60°,进而得出PC的长,进而得出点P到圆心的距离d满足0≤d≤2r,再考虑临界点位置的P点,进而得出m的取值范围。
(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点;再考虑临界情况,即恰好E、F点为⊙K的关联时,则KF=2KN= EF=2,即可得出圆的半径r的取值范围。