早教吧作业答案频道 -->数学-->
已知双曲线X2/A2-Y2/2=1(A>根号2)的两条渐近线的夹角为π/3,则双曲线的离心率
题目详情
已知双曲线X2/A2-Y2/2=1(A>根号2)的两条渐近线的夹角为π/3,则双曲线的离心率
▼优质解答
答案和解析
双曲线X^2/A2-Y^2/2=1(A>根号2)
其渐近线为X^2/A2-Y^2/2=0,即Y=±√2/A X
A>√2
Y=-√2/A X的斜率K1=-√2/A,-1<K1<0,令其与x轴夹角α
Y=√2/A X的斜率K2=√2/A,0<K2<1,令其与x轴夹角β
相当每条渐近线与X轴的夹角都小于π/4
两条渐近线的夹角为π/3
则β-α=π/3
tan(β-α) = tan(π/3)
(tanβ-tanα)/(1+tanβtanα) = tan(π/3)
(K2-K1)/(1+K2K1) = √3
(√2/A+√2/A)/(1-√2/A√2/A) = √3
2√2A/(A^2-2)=√3
√3A^2-2√2A-2√3=0
(√3A+√2)(A-√6)=0
A=√6
离心率e = √(A^2+B&2)/A = √(6+2)/√6 = 2√3/3
其渐近线为X^2/A2-Y^2/2=0,即Y=±√2/A X
A>√2
Y=-√2/A X的斜率K1=-√2/A,-1<K1<0,令其与x轴夹角α
Y=√2/A X的斜率K2=√2/A,0<K2<1,令其与x轴夹角β
相当每条渐近线与X轴的夹角都小于π/4
两条渐近线的夹角为π/3
则β-α=π/3
tan(β-α) = tan(π/3)
(tanβ-tanα)/(1+tanβtanα) = tan(π/3)
(K2-K1)/(1+K2K1) = √3
(√2/A+√2/A)/(1-√2/A√2/A) = √3
2√2A/(A^2-2)=√3
√3A^2-2√2A-2√3=0
(√3A+√2)(A-√6)=0
A=√6
离心率e = √(A^2+B&2)/A = √(6+2)/√6 = 2√3/3
看了 已知双曲线X2/A2-Y2/...的网友还看了以下: