早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB形外作正方形ABCD,若正方形ABCD的对角线交于点O(如图1)(1)求证:EO平分∠AEB.(2)试猜想线段OE与EB,EA之间的数量关系,请写出结论并证明

题目详情
在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB形外作正方形ABCD,若正方形ABCD的对角线交于点O(如图1)
(1)求证:EO平分∠AEB.
(2)试猜想线段OE与EB,EA之间的数量关系,请写出结论并证明.
(3)过点C作CF⊥EB于F,过点D作DH⊥EA于H,CF和DH的反向延长线交于点G(如图2),求证:四边形EFGH为正方形.
作业帮
▼优质解答
答案和解析
(1)证明:∵四边形ABCD是正方形,
∴∠ABC=∠BAD=90°,AC⊥BD,∠ABO=∠BAO=45°,
∴∠AOB=90°,
∴∠AEB+∠AOB=90°+90°=180°,
∴A、O、B、E四点共圆,
∵OA=OB,
∴∠OEB=∠OEA,即EO平分∠AEB;

(2) AE+BE=
2
OE.
理由:如图1,延长EA至点F,使AF=BE,连接OF,
∵由(1)知,∠OBE+∠OAE=180°,∠OAE+∠OAF=180°作业帮
∴∠OBE=∠OAE,
在△OBE与△OAF中,
OB=OA
∠OBE=∠OAF
BE=AF

∴△OBE≌△OAF(SAS),
∴OE=OF,∠BOE=∠AOF.
∵∠BOE+∠AOE=90°,
∴∠AOF+∠AOE=90°,
∴∠EOF=90°,
∴△EOF是等腰直角三角形,
∴2OE2=EF2,即2OE2=(AE+BE)2
∴AE+BE=
2
OE.

(3)证明:如图2所示,
作业帮∵ABCD是正方形,∠E=∠H=90°,
∴AB=AD.
∵∠EAB+∠DAH=90°,∠EAB+∠ABE=90°,∠ADH+∠DAH=90°,
∴∠EAB=∠HAD,∠ABE=∠DAH.
在△ABE与△ADH中,
∠EAB=∠HAD
AB=AD
∠ABE=∠DAH

∴△ABE≌△ADH(ASA).
同理可得,△ABE≌△ADH,△ADH≌△DCG,△DCG≌△CBF,
∴CG+FG=BF+BE=AE+AH,
∴四边形EFGH为正方形.