早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2010•普陀区一模)已知△ABC为等边三角形,AB=6,P是AB上的一个动点(与A、B不重合),过点P作AB的垂线与BC相交于点D,以点D为正方形的一个顶点,在△ABC内作正方形DEFG,其中D、E在BC上,

题目详情
(2010•普陀区一模)已知△ABC为等边三角形,AB=6,P是AB上的一个动点(与A、B不重合),过点P作AB的垂线与BC相交于点D,以点D为正方形的一个顶点,在△ABC内作正方形DEFG,其中D、E在BC上,F在AC上,
(1)设BP的长为x,正方形DEFG的边长为y,写出y关于x的函数解析式及定义域;
(2)当BP=2时,求CF的长;
(3)△GDP是否可能成为直角三角形?若能,求出BP的长;若不能,请说明理由.
▼优质解答
答案和解析
(1)∵△ABC为等边三角形,
∴∠B=∠C=60°,AB=BC=AC=6.(1分)
∵DP⊥AB,BP=x,
∴BD=2x.(1分)
又∵四边形DEFG是正方形,
∴EF⊥BC,EF=DE=y,
EC=
3
3
y.(1分)
2x+y+
3
3
y=6,(2分)
y=(
3
−3)x+9−3
3
.(1分)
(6-3
3
≤x<3)(1分)

(2)当BP=2时,y=(
3
−3)×2+9−3
3
=3−
3
.(1分)
CF=
作业帮用户 2017-10-11
问题解析
(1)在△BDP中,根据已知条件得BD=2x,在△CEF中,根据已知条件得EC=
3
3
,得y关于x的函数解析式.再求出x的定义域.
(2)BP=2,根据(2)得到的y关于x的函数解析式求出CF的长.
(3)假设△GDP是直角三角形,得△APF是直角三角形,得PF的x、y的函数解析式.再把(2)得到的关于x、y的函数解析式代入PF的函数解析式中,得到BP的长.
名师点评
本题考点:
等边三角形的性质;勾股定理的逆定理;正方形的性质.
考点点评:
此题是一个综合性很强的题目,主要考查等边三角形的性质、解直角三角形、三角形相似、函数等知识.
难度很大,有利于培养同学们钻研和探索问题的精神.
我是二维码 扫描下载二维码