早教吧作业答案频道 -->数学-->
若60/(x+1)(x+2)(x+3)=a/x+1+b/x-2+c/x+3其中a、b、c为常数求a+b+c的值
题目详情
若60/(x+1)(x+2)(x+3)=a/x+1+b/x-2+c/x+3其中a、b、c为常数求a+b+c的值
▼优质解答
答案和解析
a/x+1+b/x+2+c/x+3=[a(x+2)(x+3)+b(x+1)(x+3)+c(x+1)(x+2)]/(x+1)(x+2)(x+3)
=[(a+b+c)x^2+(5a+4b+3c)x+6a+3b+2c](x+3)]/(x+1)(x+2)(x+3)=60/(x+1)(x+2)(x+3)
∴a+b+c=0
=[(a+b+c)x^2+(5a+4b+3c)x+6a+3b+2c](x+3)]/(x+1)(x+2)(x+3)=60/(x+1)(x+2)(x+3)
∴a+b+c=0
看了 若60/(x+1)(x+2)...的网友还看了以下: