早教吧 育儿知识 作业答案 考试题库 百科 知识分享

∫(e,+∞)dx/xln^kx是收敛的,则k的取值范围为什么事广义积分呢~

题目详情
∫(e,+∞)dx/xln^kx 是收敛的,则k的取值范围为 什么事广义积分呢~
▼优质解答
答案和解析
广义积分就是至少有一端积分限的极限存在的积分
∫(e,+∞)dx/xln^kx
=∫(e,+∞)dlnx/ln^kx
=-(k-1)/(lnx)^(k-1)[e,+∞)
它是收敛的,说明两端的值都存在

lim(x→+∞) 1/(lnx)^(k-1)存在
所以k-1≥1
k≥2