早教吧作业答案频道 -->数学-->
如图,在Rt△ACB中,∠C=90゜,点O为AB的中点,OE⊥OF交AC于E点、交BC于F点,EM⊥AB,FN⊥AB,垂足分别为M、N,求证:AM=ON.
题目详情
如图,在Rt△ACB中,∠C=90゜,点O为AB的中点,OE⊥OF交AC于E点、交BC于F点,EM⊥AB,FN⊥AB,垂足分别为M、N,
求证:AM=ON.

求证:AM=ON.

▼优质解答
答案和解析
证明:连接OC,EF,
∵在Rt△ACB中,∠C=90゜,OE⊥OF,
∴∠EOF=90°,
∴∠C+∠EOF=180°,
∴C,E,O,F四点共圆,
∴∠ECO=∠EFO,
∵点O为AB的中点,
∴OA=OC=OB=
AB,
∴∠A=∠ECO,
∴∠A=∠EFO,
∵EM⊥AB,
∴∠AME=∠EOF=90°,
∴△EOF∽△EMA,
∴
=
,
∵FN⊥AB,EM⊥AB,
∴∠FON+∠NFO=90°,
∴∠EOM+∠MEO=90°,
∵∠EOM+∠FON=90°,
∴∠MEO=∠FON,
∴△EOM∽△OFN,
∴
=
,
∴
=
,
∴AM=ON.

∵在Rt△ACB中,∠C=90゜,OE⊥OF,
∴∠EOF=90°,
∴∠C+∠EOF=180°,
∴C,E,O,F四点共圆,
∴∠ECO=∠EFO,
∵点O为AB的中点,
∴OA=OC=OB=
1 |
2 |
∴∠A=∠ECO,
∴∠A=∠EFO,
∵EM⊥AB,
∴∠AME=∠EOF=90°,
∴△EOF∽△EMA,
∴
AM |
EM |
OF |
EO |
∵FN⊥AB,EM⊥AB,
∴∠FON+∠NFO=90°,
∴∠EOM+∠MEO=90°,
∵∠EOM+∠FON=90°,
∴∠MEO=∠FON,
∴△EOM∽△OFN,
∴
ON |
EM |
OF |
EO |
∴
AM |
EM |
ON |
EM |
∴AM=ON.
看了 如图,在Rt△ACB中,∠C...的网友还看了以下:
已知函数f(x)=10x,对于实数m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)= 2020-05-13 …
如果函数f(x)的定义域为R,对于m,n∈R,恒有f(m+n)=f(m)+f(n)-6,且f(-1 2020-05-14 …
定义映射f:A→B,其中A={(m,n)|m,n∈R}接着 B=R,已知对所有的有序正整数对(m, 2020-05-16 …
一道高一水平的数学体,具体如下:函数y=f(x)定义在R上,当x>0时,f(x)>1,且对任意m, 2020-06-05 …
设f(x)=x²-2014x+2014,f(x)表示关于x的函数,如f(0)=0²-2014×0+ 2020-07-09 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:①f(x)在[m,n]内是单调的对 2020-08-02 …
二次函数在指定区间上恒成立问题的充分必要条件的有关问题,看是否正确,0分当X属于[m,n]时,f(x 2020-11-01 …
谁能帮我做做这道题.....已知函数f(x)=ax*x+bx(a,b为常数,且a=/=0)满足条件: 2020-11-23 …
如果函数f(x)的定义域为R,对于m,n∈R,恒有f(m+n)=f(m)+f(n)-6,且f(-1) 2021-02-04 …