早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,直线y=-x+1与x轴交于点A,与y轴交于点B,P(a,b)为双曲线y=12x(x>0)上的一点,PM⊥x轴于M,交AB于E,PN⊥y轴于N,交AB于F.(1)用含a,b的代数式表示E、F两点的坐标及△EOF的面积;(

题目详情
如图,直线y=-x+1与x轴交于点A,与y轴交于点B,P(a,b)为双曲线y=
1
2x
(x>0)上的一点,PM⊥x轴于M,交AB于E,PN⊥y轴于N,交AB于F.
(1)用含a,b的代数式表示E、F两点的坐标及△EOF的面积;
(2)△EOF与△BOE是否相似?如果相似,请证明;如果不相似,请说明理由;
(3)无论点P在双曲线第一象限部分上怎样移动,证明∠EOF是一个定值.
▼优质解答
答案和解析
(1)由题意知:A(1,0),B(0,1);
则:OA=OB=1,∠OBA=∠OAB=45°,△BNF、△EMA为等腰直角三角形;
∴BN=NF=1-b,EM=MA=1-a,即E(a,1-a),F(1-b,b);
S△EOF=S△AOF-S△AOE=
1
2
b-
1
2
(1-a)=
1
2
×1×[b-(1-a)]=
1
2
(a+b-1).

(2)已知:B(0,1)、E(a,1-a)、F(1-b,b);
则PF=PN-FN=a-(1-b)=a+b-1,PE=PM-EM=b-(1-a)=a+b-1,
在直角三角形PEF中,根据勾股定理得:EF=
(a+b−1)2+(b−1+a)2
=
2
(a+b-1),
同理:OE=
a2+(1−a)2
=
2a2−2a+1
,BE=
a2+(1−a−1)2
=
2
a;
因此:OE2=2a2-2a+1,EF•BE=2a(a+b-1)=2a2-2a+2ab;
由于点P在反比例函数的图象