早教吧作业答案频道 -->其他-->
如图,直线y=-x+1与x轴交于点A,与y轴交于点B,P(a,b)为双曲线y=12x(x>0)上的一点,PM⊥x轴于M,交AB于E,PN⊥y轴于N,交AB于F.(1)用含a,b的代数式表示E、F两点的坐标及△EOF的面积;(
题目详情
如图,直线y=-x+1与x轴交于点A,与y轴交于点B,P(a,b)为双曲线y=
(x>0)上的一点,PM⊥x轴于M,交AB于E,PN⊥y轴于N,交AB于F.
(1)用含a,b的代数式表示E、F两点的坐标及△EOF的面积;
(2)△EOF与△BOE是否相似?如果相似,请证明;如果不相似,请说明理由;
(3)无论点P在双曲线第一象限部分上怎样移动,证明∠EOF是一个定值.
1 |
2x |
(1)用含a,b的代数式表示E、F两点的坐标及△EOF的面积;
(2)△EOF与△BOE是否相似?如果相似,请证明;如果不相似,请说明理由;
(3)无论点P在双曲线第一象限部分上怎样移动,证明∠EOF是一个定值.
▼优质解答
答案和解析
(1)由题意知:A(1,0),B(0,1);
则:OA=OB=1,∠OBA=∠OAB=45°,△BNF、△EMA为等腰直角三角形;
∴BN=NF=1-b,EM=MA=1-a,即E(a,1-a),F(1-b,b);
S△EOF=S△AOF-S△AOE=
b-
(1-a)=
×1×[b-(1-a)]=
(a+b-1).
(2)已知:B(0,1)、E(a,1-a)、F(1-b,b);
则PF=PN-FN=a-(1-b)=a+b-1,PE=PM-EM=b-(1-a)=a+b-1,
在直角三角形PEF中,根据勾股定理得:EF=
=
(a+b-1),
同理:OE=
=
,BE=
=
a;
因此:OE2=2a2-2a+1,EF•BE=2a(a+b-1)=2a2-2a+2ab;
由于点P在反比例函数的图象
则:OA=OB=1,∠OBA=∠OAB=45°,△BNF、△EMA为等腰直角三角形;
∴BN=NF=1-b,EM=MA=1-a,即E(a,1-a),F(1-b,b);
S△EOF=S△AOF-S△AOE=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
(2)已知:B(0,1)、E(a,1-a)、F(1-b,b);
则PF=PN-FN=a-(1-b)=a+b-1,PE=PM-EM=b-(1-a)=a+b-1,
在直角三角形PEF中,根据勾股定理得:EF=
(a+b−1)2+(b−1+a)2 |
2 |
同理:OE=
a2+(1−a)2 |
2a2−2a+1 |
a2+(1−a−1)2 |
2 |
因此:OE2=2a2-2a+1,EF•BE=2a(a+b-1)=2a2-2a+2ab;
由于点P在反比例函数的图象
看了 如图,直线y=-x+1与x轴...的网友还看了以下:
在学习完全平方公式(x+y)2=x2+2xy+y2时,小明学会了用图形面积来验证它的正确性,如图1 2020-04-09 …
下面2个函数中表示同一函数的是?1)y=x与y=lg10*2)y=lgx的平方与y=2lgx注:* 2020-04-27 …
图示为一个内、外半径分别为R1和R2的圆环状均匀带电平面,其单位面积带电量为。取环面中心O为原点, 2020-05-13 …
如图所示,一滑块自固定斜面由静止开始下滑,斜面与滑块之间有摩擦.x代表相对出发点的位移,t代表运动 2020-05-13 …
题是九个未知数的方程式.5X = 6X = 7X = 8X = 10X = 13X = 14X = 2020-05-16 …
对于集合{1,-1,3,-3,5}换另一种表示方法,可以表示为什么呢可以表示为{x│(x2-9)× 2020-05-21 …
用列举法表示集合{X∈|(X-1)^2(X+1)=0}{X∈N|6-X/6∈NB={Y∈N|Y=- 2020-06-14 …
二维平面里面有x、y两个坐标轴,平面里面表示一点就是用x,y的轴,三维就是三个x,y坐标轴? 2020-06-14 …
小妹今年要上高中,提前借了书来预习,“不等式x-7<3的集合表示为D={X∈R丨x<10}”这个我 2020-06-19 …
如图所示,一条边利用足够长的墙,用12m长的篱笆围出一块五边形的苗圃.已知EA⊥AB,CB⊥AB, 2020-07-03 …