早教吧作业答案频道 -->数学-->
已知f(x)在[0,1]上二阶可导,f(0)=f(1)=0,f(x)>0求证|f''(x)/f(x)|在(0,1)上的积分
题目详情
已知f(x)在[0,1]上二阶可导,f(0)=f(1)=0,f(x)>0求证|f''(x)/f(x)|在(0,1)上的积分
▼优质解答
答案和解析
感觉此题不好,因为积分可能不存在.
考虑f(x)的最大值点f(c)=A>0,于是[f(c)-f(0)]/(c-0)=f'(a),[f(c)-f(1)]/(c-1)=f'(b),即A/c=f'(a),A/(1-c)=-f'(b),因此积分(从0到1)|f''(x)|/f(x)dx>=积分(从a到b)|f''(x)|/f(x)dx>=|积分(从a到b)f''(x)|/Adx=|f'(b)-f'(a)|/A=1/c+1/(1-c)>=4
考虑f(x)的最大值点f(c)=A>0,于是[f(c)-f(0)]/(c-0)=f'(a),[f(c)-f(1)]/(c-1)=f'(b),即A/c=f'(a),A/(1-c)=-f'(b),因此积分(从0到1)|f''(x)|/f(x)dx>=积分(从a到b)|f''(x)|/f(x)dx>=|积分(从a到b)f''(x)|/Adx=|f'(b)-f'(a)|/A=1/c+1/(1-c)>=4
看了 已知f(x)在[0,1]上二...的网友还看了以下:
函数问题f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小函数问题f( 2020-05-14 …
一道有关微积分中值定理的题目已知函数f(x)在区间【0,1】上连续,在(0,1)内可导,且f(0) 2020-05-16 …
高数中的微分中值定理的一道题f(x)在【0,1】内连续,在(0,1)内可导,并且f(0)=f(1) 2020-05-17 …
设函数f(x)在区间0,1上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1, 2020-06-22 …
一道中值定理的题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1 2020-07-13 …
F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx->1f(x)/x-1= 2020-07-26 …
不定积分题和其他题.F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx-> 2020-07-30 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
设f(x)在闭区间0到1上连续,在开区间0到1内可微.且f(0)=f(1)=0,f(1/2)=1, 2020-08-01 …
一道简单的高数题.设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0 2020-08-02 …