早教吧 育儿知识 作业答案 考试题库 百科 知识分享

高数问题,急f(x)连续,满足exp{积分[上限3x,下限0]被积函数f(t/3)dt}=f(x),则f(x)=?答案是1/(1-3x)

题目详情
高数问题,急
f(x)连续,满足exp{积分[上限3x,下限0]被积函数f(t/3)dt}=f(x),则f(x)=?
答案是1/(1-3x)
▼优质解答
答案和解析
exp{积分[上限3x,下限0]被积函数f(t/3)dt}=f(x)
两边同时对x求导,得
exp{积分[上限3x,下限0]被积函数f(t/3)dt} ·3f(x)=f'(x)
f(x)·3f(x)=f'(x)
df(x)/dx=3f²(x)
1/[f²(x)]df(x)=3dx
两边积分,得
-[f(x)]^(-1)=3x+c
又x=0时
f(0)=1
c=-1

-[f(x)]^(-1)=3x-1
所以
f(x)=1/(1-3x)