早教吧作业答案频道 -->数学-->
定积分∫(0到π/4)(cosx)^4=
题目详情
定积分∫(0到π/4)(cosx)^4=
▼优质解答
答案和解析
∫【0→π/4】(cosx)^4dx
=∫【0→π/4】[(cos2x+1)/2]²dx
=∫【0→π/4】(cos²2x+2cos2x+1)/4 dx
=1/4 ∫【0→π/4】[(cos4x+1)/2+2cos2x+1]dx
=1/4 ∫【0→π/4】[(cos4x)/2+2cos2x+3/2]dx
=【0→π/4】1/4 [(sin4x)/8+sin2x+3x/2]
=1/4[(sinπ)/8+sin(π/2)+3π/8-0]
=1/4+3π/32
=∫【0→π/4】[(cos2x+1)/2]²dx
=∫【0→π/4】(cos²2x+2cos2x+1)/4 dx
=1/4 ∫【0→π/4】[(cos4x+1)/2+2cos2x+1]dx
=1/4 ∫【0→π/4】[(cos4x)/2+2cos2x+3/2]dx
=【0→π/4】1/4 [(sin4x)/8+sin2x+3x/2]
=1/4[(sinπ)/8+sin(π/2)+3π/8-0]
=1/4+3π/32
看了 定积分∫(0到π/4)(co...的网友还看了以下: