早教吧作业答案频道 -->数学-->
已知数列{an}中,a1=l,在a1,a2之间插人1个数,在a2,a3之间插人2个数,在a3,a4之间插入3个数,…,在an,an+1之间插人n个数,使得所有插人的数和原数列{an}中的所有项按原有位置顺序构成一
题目详情
已知数列{an}中,a1=l,在a1,a2之间插人1个数,在a2,a3之间插人2个数,在a3,a4之间插入3个数,…,在an,an+1之间插人n个数,使得所有插人的数和原数列{an}中的所有项按原有位置顺序构成一个正项等差数列{bn}.
(1)若a3=11,求{bn}的通项公式;
(2)设数列{bn}的前n项和为Sn,且满足
=bn+μ(λ,μ为常数),求{an}的通项公式•
(1)若a3=11,求{bn}的通项公式;
(2)设数列{bn}的前n项和为Sn,且满足
2Sn+λ |
▼优质解答
答案和解析
(1)设{bn}的公差为d,由题意:数列{bn}的前几项为:
b1=a1=1,b2,b3=a2,b4,b5,b6=a3,即a3为{bn}的第六项,
则b6=b1+5d=11,
而b1=1,∴d=2,
故数列{bn}的通项公式为bn=1+2(n-1)=2n-1;
(2)由
=bn+μ(λ,μ为常数),
得2Sn+λ=(bn+μ)2=bn2+2μbn+μ2,①
当n≥2时,2Sn-1+λ=bn-12+2μbn-1+μ2,②
①-②得2bn=bn2-bn-12+2μ(bn-bn-1),
则2bn=d(bn+bn-1)+2μd=d(2bn-d)+2μd,
即(2-2d)bn=2μd-d2.
当d≠1时,bn=
(n≥2)为常数,
∵{bn}是正项等差数列,∴d=0,
则bn=0,与b1=a1=1矛盾,∴d=1.
∴等差数列{bn}的首项为1,公差d=1,则bn=n.
设数列{an}中的第n项为数列{bn}中的第k项,
则an前面共有{an}的n-1项,
又插入了1+2+…+(n-1)=
项,
则k=(n-1)+
+1=
.
故an=bk=k=
.
b1=a1=1,b2,b3=a2,b4,b5,b6=a3,即a3为{bn}的第六项,
则b6=b1+5d=11,
而b1=1,∴d=2,
故数列{bn}的通项公式为bn=1+2(n-1)=2n-1;
(2)由
2Sn+λ |
得2Sn+λ=(bn+μ)2=bn2+2μbn+μ2,①
当n≥2时,2Sn-1+λ=bn-12+2μbn-1+μ2,②
①-②得2bn=bn2-bn-12+2μ(bn-bn-1),
则2bn=d(bn+bn-1)+2μd=d(2bn-d)+2μd,
即(2-2d)bn=2μd-d2.
当d≠1时,bn=
2μd-d2 |
2-2d |
∵{bn}是正项等差数列,∴d=0,
则bn=0,与b1=a1=1矛盾,∴d=1.
∴等差数列{bn}的首项为1,公差d=1,则bn=n.
设数列{an}中的第n项为数列{bn}中的第k项,
则an前面共有{an}的n-1项,
又插入了1+2+…+(n-1)=
n(n-1) |
2 |
则k=(n-1)+
n(n-1) |
2 |
n2+n |
2 |
故an=bk=k=
n2+n |
2 |
看了 已知数列{an}中,a1=l...的网友还看了以下:
“六一”儿童节同学们在校门口插彩旗,按红黄绿蓝为一组的顺序插了62面彩旗.(1)第18面旗是什么颜 2020-05-14 …
1.已知数列{an}中,a(1)=1,a(2)=6,a(n+2)=a(n+1)-a(n),则a(2 2020-05-14 …
为了庆祝国庆节,马路边按三黄四蓝四红的顺序插了一些旗子,已知第1、2、3面都是黄色,则第100面是 2020-05-15 …
等差数列的一些问题1.等差数列-3,1,5...的第15项a15=2.已知3与x的等差中项为6,则 2020-05-17 …
在400米的环形跑道上,每隔5米插1面红旗、2面蓝旗的顺序插,一共需要红旗和蓝旗各多少面?(跑道两 2020-05-23 …
按事情的发展经过是记叙文的什么顺序记叙文的顺序可分为时间(顺序插叙倒序)空间逻辑.那如果一篇文章以 2020-06-07 …
东方广场为庆元旦插旗,按“红、红、蓝、蓝、绿”的顺序插旗,第215面旗是什么颜色?第732面旗 2020-06-23 …
如图是一颗铆钉自动铆接的过程.在常温下把铆钉做成铆接后的形状(图a);然后降温并将其两脚拉直,使之 2020-07-03 …
六一儿童节,需要在60米的校道两旁插上旗子,每2米插一面,两端都要插.如果按照黄,黄,红,红,红的 2020-07-06 …
装配仪器时,将玻璃管插入橡皮管时,应选择内径略大于玻璃管外径的橡皮管,以便顺利插入.. 2020-07-31 …