早教吧作业答案频道 -->数学-->
已知Sn是数列{an}的前n项和,Sn满足关系式2Sn=S(n-1)-(1/2)^(n-1)+2(n>=2,n为正整数)a1=1/2(1):令bn=2^n*an求证数列bn是等差数列,并求数列an的通项公式(2):在(1)的条件下,求Sn的取值范围(注
题目详情
已知Sn是数列{an}的前n项和,Sn满足关系式2Sn=S(n-1)-【(1/2)^(n-1)】+2 (n>=2,n为正整数) a1=1/2
(1):令bn=2^n*an求证数列bn是等差数列,并求数列an的通项
公式
(2):在(1)的条件下,求Sn的取值范围
(注:第一问里面(*)这个是乘号.)
(1):令bn=2^n*an求证数列bn是等差数列,并求数列an的通项
公式
(2):在(1)的条件下,求Sn的取值范围
(注:第一问里面(*)这个是乘号.)
▼优质解答
答案和解析
(1)
2Sn=S(n-1)-【(1/2)^(n-1)】+2
2^n. Sn - 2^(n-1) S(n-1) =-1+ 2^(n-1)
2^n. Sn - 2^1. S1 =(-1+ 2^1)+(-1+2^2)+...+[-1+ 2^(n-1)]
= -(n-1) + 2[ 2^(n-1) -1 ]
= -n-1 + 2^n
2^n. Sn = -n + 2^n
Sn = 1-n.(1/2)^n
an = Sn - S(n-1)
= [ -n/2 + (n-1) ](1/2)^(n-1)
=[ (n-2)/2] . (1/2)^(n-1) ; n>=2
= 1/2 ; n=1
(2)
Sn = 1-n.(1/2)^n
consider
f(x) = 1- x(1/2)^x
f'(x) = -(1/2)^x. [ 1+ x ln(1/2) ] =0
x = -1/ln(1/2) = 1.442
S1 = 1/2
S2 = 1-2.(1/2)^2 = 1/2
Sn的取值范围 = [ 1/2 , 1)
2Sn=S(n-1)-【(1/2)^(n-1)】+2
2^n. Sn - 2^(n-1) S(n-1) =-1+ 2^(n-1)
2^n. Sn - 2^1. S1 =(-1+ 2^1)+(-1+2^2)+...+[-1+ 2^(n-1)]
= -(n-1) + 2[ 2^(n-1) -1 ]
= -n-1 + 2^n
2^n. Sn = -n + 2^n
Sn = 1-n.(1/2)^n
an = Sn - S(n-1)
= [ -n/2 + (n-1) ](1/2)^(n-1)
=[ (n-2)/2] . (1/2)^(n-1) ; n>=2
= 1/2 ; n=1
(2)
Sn = 1-n.(1/2)^n
consider
f(x) = 1- x(1/2)^x
f'(x) = -(1/2)^x. [ 1+ x ln(1/2) ] =0
x = -1/ln(1/2) = 1.442
S1 = 1/2
S2 = 1-2.(1/2)^2 = 1/2
Sn的取值范围 = [ 1/2 , 1)
看了 已知Sn是数列{an}的前n...的网友还看了以下: