早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在四棱锥P-ABCD中,四边形ABCD为矩形,AB⊥BP,M、N分别为AC、PD的中点.求证:(1)MN∥平面ABP;(2)平面ABP⊥平面APC的充要条件是BP⊥PC.

题目详情
如图,在四棱锥P-ABCD中,四边形ABCD为矩形,AB⊥BP,M、N分别为AC、PD的中点.
求证:
(1)MN∥平面ABP;
(2)平面ABP⊥平面APC的充要条件是BP⊥PC.
▼优质解答
答案和解析
证明:(1)连接BD,由于四边形ABCD为矩形,
则BD必过点M.(1分)
又点N是PD的中点,则MN∥BP,(2分)
∵MN⊄面ABP,BP⊂面ABP,
∴MN∥平面ABP.(4分)
(2)充分性:由“BP⊥PC”⇒“平面ABP⊥平面APC”,
∵AB⊥BP,AB⊥BC,BP⊂面PBC,BC⊂面PBC,BP∩BC=B,
∴AB⊥面PBC,(6分)
∵PC⊂面PBC,∴AB⊥PC,(7分)
又∵PC⊥BP,AB,BP是面ABP内两条相交直线,
∴PC⊥面ABP,PC⊂面APC,(9分)
∴面ABP⊥面APC.(10分)
必要性:由“平面ABP⊥平面APC”⇒“BP⊥PC.”
过B作BH⊥AP于H,
∵平面ABP⊥平面APC,面ABP∩面APC=AP,
BH⊂面ABP,∴BH⊥面APC.(12分)
∵AB⊥PC,
∴PC⊥面ABP,PC⊥PB.
故平面ABP⊥平面APC的充要条件是BP⊥PC.(14分)
看了 如图,在四棱锥P-ABCD中...的网友还看了以下: