早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,等边三角形ABC内接于圆O,P是弧AB上任意一点,连接AP,BP,过点C作CM平行BP交PA的延长线于点M

题目详情
如图,等边三角形ABC内接于圆O,P是弧AB上任意一点,连接AP,BP,过点C作CM平行BP交PA的延长线于点M
▼优质解答
答案和解析
:证明:因为△ABC是正三角形
所以 弧AC 对应 ∠MPC和 ∠ABC相等,所以∠MPC=60度
同理 ∠BPC=∠BAC=60度
因为 PB//CM 所以 ∠PCM=∠BPC=60度
这样在△PCM中,∠MPC=∠PCM=60度
因此△PCM是正三角形
2:两个等边三角形,则MC=PC,AC=BC
又 ∠ACM+∠ACP=60度=∠ACP+∠PCB
所以∠ACM=∠PCB
因此 △MAC≌△BPC
所以 AM=PB=2
所以 PM=MC=PC=3
因为 ∠APB=120(对应120圆弧)
PA=1 PB=2
所以AB=√(1+2x2+2x1x2x1/2)=√7
S梯形PBCM=S△BPC+S△MPC
=1/2BPxPCsin60+1/2MPxPCsin60
=1/2x2x3x√3/2+1/2x3x3x√3/2
=3x√3/2+9√3/4
=15√3/4