早教吧作业答案频道 -->数学-->
已知,点A(10,0)B(6,8),点P为线段OA上一动点(不与点A、点O重合),以PA为半径的⊙P与线段AB的另一个交点为C,作CD⊥OB于D(如图1)(1)求证:CD是⊙P的切线;(2)求当⊙P与OB相切
题目详情
已知,点A(10,0)B(6,8),点P为线段OA上一动点(不与点A、点O重合),以PA为半径的⊙P与线段AB的另一个交点为C,作CD⊥OB于D(如图1)
(1)求证:CD是⊙P的切线;
(2)求当⊙P与OB相切时⊙P的半径;
(3)在(2)的情况下,设(2)中⊙P与OB的切点为E,连接PB交CD于点F(如图2)
①求CF的长;
②在线段DE上是否存在点G使∠GPF=45°?若存在,求出EG的长;若不存在,请说明理由.
(1)求证:CD是⊙P的切线;
(2)求当⊙P与OB相切时⊙P的半径;
(3)在(2)的情况下,设(2)中⊙P与OB的切点为E,连接PB交CD于点F(如图2)
①求CF的长;
②在线段DE上是否存在点G使∠GPF=45°?若存在,求出EG的长;若不存在,请说明理由.
▼优质解答
答案和解析
(1)连接PC,过B作BN⊥x轴于点N.
∵PC=PA(⊙P的半径),
∴∠1=∠2(等边对等角).
∵A(10,0),B(6,8),
∴OA=10,BN=8,ON=6,
∴在Rt△OBN中,OB=
=10(勾股定理),
∴OA=OB,
∴∠OBA=∠1(等边对等角),
∴∠OBA=∠2(等量代换),
∴PC∥OB(同位角相等,两直线平行).
∵CD⊥OB,
∴CD⊥PC,
∴CD为⊙P的切线;
(2)如图2,过B作BN⊥x轴于点N,设圆P的半径为r.
∵⊙P与OB相切于点E,则OB⊥PE,OA=10,
∴在Rt△OPE中,sin∠EOP=
=
,
在Rt△OBN中,sin∠BON=
=
=
,
∴
=
,
解得:r=
;
(3)①如图3,∵由(2)知r=
,
∴在Rt△OPE中,OE=
=
=
(勾股定理),
∵∠PCD=∠CDE=∠PED=90°,
∴四边形PCDE是矩形.
又∵PE=PC(⊙O的半径),
∴矩形PCDE是正方形,
∴DE=DC=r=
,
∴BD=OB-OE-DE=10-
∵PC=PA(⊙P的半径),
∴∠1=∠2(等边对等角).
∵A(10,0),B(6,8),
∴OA=10,BN=8,ON=6,
∴在Rt△OBN中,OB=
ON2+BN2 |
∴OA=OB,
∴∠OBA=∠1(等边对等角),
∴∠OBA=∠2(等量代换),
∴PC∥OB(同位角相等,两直线平行).
∵CD⊥OB,
∴CD⊥PC,
∴CD为⊙P的切线;
(2)如图2,过B作BN⊥x轴于点N,设圆P的半径为r.
∵⊙P与OB相切于点E,则OB⊥PE,OA=10,
∴在Rt△OPE中,sin∠EOP=
PE |
OP |
r |
10−r |
在Rt△OBN中,sin∠BON=
BN |
OB |
8 |
10 |
4 |
5 |
∴
r |
10−r |
4 |
5 |
解得:r=
40 |
9 |
(3)①如图3,∵由(2)知r=
40 |
9 |
∴在Rt△OPE中,OE=
OP2−PE2 |
(10−
|
10 |
3 |
∵∠PCD=∠CDE=∠PED=90°,
∴四边形PCDE是矩形.
又∵PE=PC(⊙O的半径),
∴矩形PCDE是正方形,
∴DE=DC=r=
40 |
9 |
∴BD=OB-OE-DE=10-
看了 已知,点A(10,0)B(6...的网友还看了以下:
江苏数竞复赛二试平几题.圆O1、O2交于A、B两点,过A作直线交两圆于C、D,过C、D作两圆切线, 2020-07-12 …
3、飞轮绕定轴作匀速转动时,飞轮边缘上任意一点的()(A)切向加速度为零,法向加速度不为零(B)切 2020-07-14 …
如图,BC是半圆O的直径,点D是半圆上一点,过点D作⊙O切线AD,BA⊥DA于点A,BA交半圆于点 2020-07-26 …
已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为5,过点C作⊙A的切线 2020-07-26 …
如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=°,∠E 2020-07-31 …
已知圆(x-2)²+(y-1)²=8和圆外一点M(4,8).(1)过M作圆的两条切线切点为C、D, 2020-07-31 …
已知圆x2+y2-4x+2y-3=0和圆外一点M(4,-8),(1)过M作圆的割线交圆于A、B两点 2020-07-31 …
(1999•湖南)已知:如图,EB是⊙O的直径,且EB=6.在BE的延长线上取点P,使EP=EB. 2020-07-31 …
已知点D(0,-2),过点D作抛物线C1:x2=2py(p>0)的切线l,切点A在第二象限,如图( 2020-08-01 …
(2012•浙江模拟)已知点D(0,-2),过点D作抛物线C1:x2=2py(p>0)的切线l,切 2020-08-01 …