早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知在正方形ABCD中,点O为对角线AC的中点,过O点的射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下面结论中:①图形中全等的三角形只有三对;②△EOF是等腰直角三

题目详情

如图,已知在正方形ABCD中,点O为对角线AC的中点,过O点的射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下面结论中:
①图形中全等的三角形只有三对;②△EOF是等腰直角三角形;
③正方形ABCD的面积等于四边形OEBF面积的4倍;
④BE+BF=

2
OA;⑤AE2+BE2=2OP•OB.
正确结论的个数是(  )
作业帮

A. 4个

B. 3个

C. 2个

D. 1个

▼优质解答
答案和解析
①不正确;
图形中全等的三角形有四对:△ABC≌△ADC,△AOB≌△COB,△AOE≌△BOF,△BOE≌△COF;理由如下:
∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠BAD=∠ABC=∠BCD=∠D=90°,∠BAO=∠BCO=45°,
在△ABC和△ADC中,
AB=ADamp; 
BC=DCamp; 
AC=ACamp; 

∴△ABC≌△ADC(SSS);
∵点O为对角线AC的中点,
∴OA=OC,
在△AOB和△COB中,
OA=OCamp; 
AB=CBamp; 
OB=OBamp; 

∴△AOB≌△COB(SSS);
∵AB=CB,OA=OC,∠ABC=90°,
∴∠AOB=90°,∠OBC=45°,
又∵∠EOF=90°,
∴∠AOE=∠BOF,
在△AOE和△BOF中,
∠OAE=∠OBF=45°amp; 
OA=OBamp; 
∠AOE=∠BOFamp; 

∴△AOE≌△BOF(ASA);
同理:△BOE≌△COF;
②正确;理由如下:
∵△AOE≌△BOF,
∴OE=OF,
∴△EOF是等腰直角三角形;
③正确.理由如下:
∵△AOE≌△BOF,
∴四边形OEBF的面积=△ABO的面积=
1
4
正方形ABCD的面积;
④正确.理由如下:
∵△BOE≌△COF,
∴BE=CF,
∴BE+BF=CF+BF=BC=AB=
2
OA;
⑤正确.理由如下:
∵△AOE≌△BOF,
∴AE=BF,
∴AE2+CF2=BE2+BF2=EF2=2OF2
在△OPF与△OFB中,
∠OBF=∠OFP=45°,
∠POF=∠FOB,
∴△OPF∽△OFB,
∴OP:OF=OF:OB,
∴OF2=OP•OB,
∴AE2+CF2=20P•OB.
正确结论的个数有4个;
故选:A.