早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P.则下列结论中:(1)图形中全等的三角形只有两对;(2)正方形ABCD的面积等于

题目详情
如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P.则下列结论中:
(1)图形中全等的三角形只有两对;
(2)正方形ABCD的面积等于四边形OEBF面积的4倍;
(3)
(4),正确的结论有 ________ 个.
▼优质解答
答案和解析
∵四边形ABCD是正方形,
易证△ABC≌△ADC.
∵点O是AC的中点,
∴AO=CO,
易证△AOB≌△COB.
∵∠EOF=∠BOC=90°,
∴∠EOB+∠FOB=∠FOB+∠FOC=90°,
∴∠EOB=∠FOC.
∵BO=CO,∠EBO=∠FCO=45°,
∴△EOB≌△FOC.
同理可证△EOA≌△FOB.
综上可知:图形中全等的三角形有四对,不是两对,故(1)错误;
∵△EOB≌△FOC,△EOA≌△FOB.

.
又∵
.
则正方形ABCD的面积等于四边形OEBF面积的4倍,故(2)正确;
∵△EOA≌△FOB,
∴EA=FB,
∴BE+BF=BE+EA=AB.
在Rt△AOB中,AO=OB,

,故(3)正确;
∵AE=BF,BE=CF,
.
过点O作OG⊥EF于点G.

∵OE=OF,
∴OG=GE=GF.
.
∵O、E、B、F四点共圆,
∴PE·PF=OP·PB,
,故(4)正确.
综上所述,(2)(3)(4)正确,则正确的结论有3个,选C.
【点评】本题是多边形的综合题,考查了全等三角形的性质和判定、正方形的性质以及直角三角形的性质,综合性较强,关键要注意两点:(1)两个全等三角形的面积相等;(2)有一组对角是直角的四边形是圆的内接四边形.
看了 如图,在正方形ABCD中,点...的网友还看了以下:

英语写作中结尾的问题?专四写作一般为三段式,对于第三段:结论,重申自己的观点,“提出希望和展望未来  2020-05-20 …

为了让“社会更加公正、更加和谐”,我们应 A.初次分配中解决好效率问题,再分配中结解决  2020-05-25 …

中考作文离题了?我想哭我中考作文写的是欣赏自己本来非常容易写的,不过我一下大意了,想写高分作文结果  2020-06-05 …

指带有其他主谓结构作分句成分的分句.whatyousaidisnottrue.(独立复杂分句/复杂句  2020-11-26 …

高一期中考语文作文没写完能得多少分?作文要求800字我写到600字左右打铃了→→没来得及结尾,高一期  2020-11-27 …

求求你们了帮看下中考作文离题了没有我中考作文写的是欣赏自己本来非常容易写的,不过我一下大意了,想写高  2020-12-12 …

中考作文离题了没?我中考作文写的是欣赏自己本来非常容易写的,不过我一下大意了,想写高分作文结果貌似是  2020-12-12 …

请你们帮看下中考作文离题了没有我中考作文写的是欣赏自己本来非常容易写的,不过我一下大意了,想写高分作  2020-12-12 …

求求你们了帮看下中考作文离题了没有我中考作文写的是欣赏自己本来非常容易写的,不过我一下大意了,想写高  2020-12-12 …

英语作文要求:一共15分A)话题表述(共5分)中考结束后,你一定有许多打算,请写出最想做的一件事,并  2021-01-22 …