早教吧作业答案频道 -->数学-->
已知A(1/2,0)为圆x^2+y^2=1内一定点,圆上有两动点P,Q恒有PA垂直QA,过P,Q做圆的两切线交于点M,求M的轨迹
题目详情
已知A(1/2,0)为圆x^2+y^2=1内一定点,圆上有两动点P,Q恒有PA垂直QA,过P,Q做圆的两切线交于点M,求M的轨迹
▼优质解答
答案和解析
楼主按照我写的这样做图哈:
连接PQ,OM,取中点N,连接AN
∵OQ⊥QM,OP⊥PM,∴N为PQ中点
∵ΔPAQ中,N为PQ中点,∴QN=NP=NQ
我的解题思路就是围绕QN=NP=NQ来的
设M为(X,Y),N(X1,Y1)
利用直角三角形OQM中的条件,可以得到
N(X1,Y1) X1=X/(X²+Y²),Y1=Y/(X²+Y²)
QN=√(X²+Y²-1)/√(X²+Y²)
AN²=(X1-1/2)²+Y1²
=(X/(X²+Y²)-1/2)²+(Y/(X²+Y²))²
利用AN²=QN²,可化简出答案为
3X²+3Y²+4X-9=0,是一个圆
连接PQ,OM,取中点N,连接AN
∵OQ⊥QM,OP⊥PM,∴N为PQ中点
∵ΔPAQ中,N为PQ中点,∴QN=NP=NQ
我的解题思路就是围绕QN=NP=NQ来的
设M为(X,Y),N(X1,Y1)
利用直角三角形OQM中的条件,可以得到
N(X1,Y1) X1=X/(X²+Y²),Y1=Y/(X²+Y²)
QN=√(X²+Y²-1)/√(X²+Y²)
AN²=(X1-1/2)²+Y1²
=(X/(X²+Y²)-1/2)²+(Y/(X²+Y²))²
利用AN²=QN²,可化简出答案为
3X²+3Y²+4X-9=0,是一个圆
看了 已知A(1/2,0)为圆x^...的网友还看了以下:
已知圆C:(X-1)的平方+(Y-2)的平方=2点P(2,-1).过P点作圆C的切线PA,PB.A 2020-04-27 …
已知函数f(x)=ax^3+bx²,曲线y=f(x)过点P(-1,2),且在点P处的切线恰好与直线 2020-05-21 …
运用反证法,证明圆的相切线垂直圆用反证法。切线过切点,且切点到圆心的距离为圆的半径。如果切点与圆心 2020-06-09 …
设函数f(x)=15x2+16x+23,L为曲线C:y=f(x)在点(-1,112)处的切线.(1 2020-07-20 …
(2014•陕西)如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线B 2020-07-20 …
过点P(-1,0)作曲线C:y=ex的切线,切点为T1,设T1在x轴上的投影是点H1,过点H1再作 2020-07-31 …
已知圆O:x2+y2=1,点P在直线L:2x+y-3=0上,过点P作圆O的两条切线,A.B为两切点 2020-07-31 …
限制酶Ⅰ的识别序列和切点是-G↓CATCC-,限制酶Ⅱ的识别序列和切点是-↓GATC-。在质粒上有 2020-07-31 …
已知e是自然对数的底数,实数a是常数,函数f(x)=ex-ax-1的定义域为(0,+∞).(1)设 2020-08-02 …
(2011•武汉)如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B, 2020-11-03 …