早教吧 育儿知识 作业答案 考试题库 百科 知识分享

1/(x+1)(x+2)+1/(x+2)(x+3)+…+1/(x+2001)(x+2002)=2001/3x+6006

题目详情
1/(x+1)(x+2)+1/(x+2)(x+3)+…+1/(x+2001)(x+2002)=2001/3x+6006
▼优质解答
答案和解析
1/(x+1)(x+2)+1/(x+2)(x+3)+…+1/(x+2001)(x+2002)=2001/(3x+6006)
1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+…+1/(x+2001)-1/(x+2002)=2001/(3x+6006)
1/(x+1)-1/(x+2002)=2001/(3x+6006)
2001/(x+1)(x+2002)=2001/(3x+6006)
1/(x+1)(x+2002)=1/(3x+6006)
(x+1)(x+2002)=3x+6006
x²+2003x+2002=3x+6006
x²+2000x-4004=0
(x+2002)(x-2)=0
x=-2002,x=2
经检验x=-2002是增根,x=2是原方程的根