早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完

题目详情
已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.
(1)①如图2,求出抛物线y=x2的“完美三角形”斜边AB的长;
②抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是___;
(2)若抛物线y=ax2+4的“完美三角形”的斜边长为4,求a的值;
(3)若抛物线y=mx2+2x+n-5的“完美三角形”斜边长为n,且y=mx2+2x+n-5的最大值为-1,求m,n的值.
作业帮
▼优质解答
答案和解析
(1)①过点B作BN⊥x轴于N,如图2,
作业帮
∵△AMB为等腰直角三角形,
∴∠ABM=45°,
∵AB∥x轴,
∴∠BMN=∠ABM=45°,
∴∠MBN=90°-45°=45°,
∴∠BMN=∠MBN,
∴MN=BN,
设B点坐标为(n,n),代入抛物线y=x2
得n=n2
∴n=1,n=0(舍去),
∴B(1,1)
∴MN=BN=1,
∴MB=
12+12
=
2

∴MA=MB=
2

在Rt△AMB中,AB=
MB2+MA2
=2,
∴抛物线y=x2的“完美三角形”的斜边AB=2.
②∵抛物线y=x2+1与y=x2的形状相同,
∴抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;
故答案为:相等.
(2)∵抛物线y=ax2与抛物线y=ax2+4的形状相同,
∴抛物线y=ax2与抛物线y=ax2+4的“完美三角形”全等,
∵抛物线y=ax2+4的“完美三角形”斜边的长为4,
∴抛物线y=ax2的“完美三角形”斜边的长为4,
∴B点坐标为(2,2)或(2,-2),
把点B代入y=ax2中,
a=±
1
2

(3)∵y=mx2+2x+n-5的最大值为-1,
4m(n-5)-4
4m
=-1,
∴mn-4m-1=0,
∵抛物线y=mx2+2x+n-5的“完美三角形”斜边长为n,
∴抛物线y=mx2的“完美三角形”斜边长为n,
∴B点坐标为(
n
2
,-
n
2
),
∴代入抛物线y=mx2,得(
n
2
)2•m=-
n
2

∴mn=-2或n=0(不合题意舍去),
m=-
3
4

n=
8
3