早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在实际中,一元回归没什么用,因为因变量的行为不可能仅由一个解释变量来解释

题目详情
在实际中,一元回归没什么用,因为因变量的行为不可能仅由一个解释变量来解释
▼优质解答
答案和解析
线性代数研究的一个对象,向量空间到自身的保运算的映射.例如,对任意线性空间V,位似σk:aka是V的线性变换,平移则不是V的线性变换,若a1,…,an是V的基,σ(aj)=a1ja1+…+anj(j=1,2,…,n),则称为σ关于基{a:}的矩阵.对线性变换的讨论可藉助矩阵实现.σ关于不同基的矩阵是相似的.Kerσ={a∈V|σ(a)=θ}(式中θ指零向量)称为σ的核,Imσ={σ(a)|a∈V}称为σ的象,是刻画σ的两个重要概念.  对于欧几里得空间,若σ关于标准正交基的矩阵是正交(对称)矩阵,则称σ为正交(对称)变换.正交变换具有保内积、保长、保角等性质,对称变换具有性质:〈σ(a),β〉=〈a,σ(β)〉.