早教吧作业答案频道 -->数学-->
设x=R,已知A={x│x=f(x)},B={x│x=f[f(x)]}(1)求证:A是B的子集.(2)当f(x)=x^2+ax+b且A={-2,2}时,试用列举法表示集合B.
题目详情
设x=R,已知A={x│x=f(x)},B={x│x=f[f(x)]}
(1)求证:A是B的子集.
(2)当f(x)=x^2+ax+b且A={-2,2}时,试用列举法表示集合B.
(1)求证:A是B的子集.
(2)当f(x)=x^2+ax+b且A={-2,2}时,试用列举法表示集合B.
▼优质解答
答案和解析
(1)
for all x ∈ A
=> x = f(x)
=>f(x) = f(f(x))
=>x = f(f(x)) ( x= f(x)
=> x ∈ B
then A is subset of B
(2)
f(x)=x^2+ax+b = x
x^2 + (a-1)x + b =0
sum of roots = -(a-1)/2 = 0
a= 1
products of roots = b = -4
ie f(x)= x^2 +x -4
for B = {x│x=f[f(x)]}
f(x) = x^2 +x - 4
f(f(x) )= ( x^2+x -4 )^2 +( x^2+x -4 )-4
x= ( x^2+x -4 )^2 +( x^2+x -4 )-4
x= (x^2-4)^2 + 2x(x^2-4) + x^2
+( x^2+x -4 )-4
x= x^4- 8x^2 +16 + 2x^3-8x + x^2
+( x^2+x -4 )-4
x^4+ 2x^3- 6x^2-8x+8 =0
(x^4-6x^2+8) + 2x(x^2-4)=0
(x^2-4)(x^2-2) + 2x(x^2-4)=0
(x^2-4)(x^2+2x-2)=0
x = 2 or -2 or -1+√3 or -1-√3
B={-1+√3 ,-1-√3,2,-2}
for all x ∈ A
=> x = f(x)
=>f(x) = f(f(x))
=>x = f(f(x)) ( x= f(x)
=> x ∈ B
then A is subset of B
(2)
f(x)=x^2+ax+b = x
x^2 + (a-1)x + b =0
sum of roots = -(a-1)/2 = 0
a= 1
products of roots = b = -4
ie f(x)= x^2 +x -4
for B = {x│x=f[f(x)]}
f(x) = x^2 +x - 4
f(f(x) )= ( x^2+x -4 )^2 +( x^2+x -4 )-4
x= ( x^2+x -4 )^2 +( x^2+x -4 )-4
x= (x^2-4)^2 + 2x(x^2-4) + x^2
+( x^2+x -4 )-4
x= x^4- 8x^2 +16 + 2x^3-8x + x^2
+( x^2+x -4 )-4
x^4+ 2x^3- 6x^2-8x+8 =0
(x^4-6x^2+8) + 2x(x^2-4)=0
(x^2-4)(x^2-2) + 2x(x^2-4)=0
(x^2-4)(x^2+2x-2)=0
x = 2 or -2 or -1+√3 or -1-√3
B={-1+√3 ,-1-√3,2,-2}
看了 设x=R,已知A={x│x=...的网友还看了以下:
我们把离心率为e=(√5+1)/2的双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)成为我 2020-03-30 …
已知a大于0,b大于0,a+b=1,求证(a+1/a)(b+1/b)大于或等于25/4.解法里面有 2020-05-15 …
用数学归纳法证明:1+a+a^2+...+a^(n+1)={1-a^(n+2)}/(1-a) 2020-06-11 …
已知a/(a^2+1)=1/2,求a^2/(a^4+1)的值由a/(a^2+1)=1/2,知a≠0 2020-06-14 …
1.已知曲线C:x^2+ycosx-y^2=0a.求dy/dxb.P(π/2,-π/2)为曲线C上 2020-06-30 …
如果有理数a,b满足|ab-2|+|1-b|=0.试求1/ab+1/(a+1)(b+1)+1(a+ 2020-07-09 …
重赏!(会多少写多少)用简便方法计算:1/1*2+1/2*3+1/3*2+…+1/99*100已知 2020-07-18 …
写出下列指令运行结果.A(1,1)={'thisiscell'};A{1,2}={[123;456 2020-07-20 …
已知x-1/x=5,求x^2/(x^4+x^2+1)的值若ab=1则1/(1+a^2)+1/(1+ 2020-07-20 …
含参数的因式分解法解一元二次方程1.x^2+ax-2a=02.x^2-(1+a)x+a=o3.x^ 2020-07-22 …