已知定点F(2,0),直线l:x=-2,点P为坐标平面上的动点,过点P作直线l的垂线,垂足为点Q,且FQ⊥(PF+PQ).(1)求动点P所在曲线C的方程;(2)直线l1过点F与曲线C交于A、B两个不同点,求证
已知定点F(2,0),直线l:x=-2,点P为坐标平面上的动点,过点P作直线l的垂线,垂足为点Q,且⊥(+).
(1)求动点P所在曲线C的方程;
(2)直线l1过点F与曲线C交于A、B两个不同点,求证:+=;
(3)记与的夹角为θ(O为坐标原点,A、B为(2)中的两点),求cosθ的最小值.
答案和解析
(1)设动点P(x,y).依据题意,可得
Q(−2,y),=(−4,y),=(2−x,−y),=(−2−x,0). (3分)
又⊥(+),
于是,•(+)=0,即y2=8x(x≥0). (6分)
因此,所求动点P的轨迹方程为C:y2=8x(x≥0).
(2)证明:∵直线l1过F点且与曲线C交于不同的A、B两点,
∴l1的斜率不为零,故设l1:x=my+2. (7分)
联立方程组得y2-8my-16=0.(8分)
设A(x1,y1),B(x2,y2),则,进一步得(10分)
又∵曲线C:y2=8x(x≥0)的准线为:x=-2,
∴左边=+=+===右边. (12分)
∴+=.证毕!
(3)由(2)可知,=(x1,y1),=(x2,y2).
∴cosθ====≥−(当且仅当m=0时,等号成立). (16分)
∴(cosθ)min=−. (18分)
已知P(1,1)和直线2X+Y-4=0.(1)求直线M过点P且L平行于M的方程(2)若直线N过点P 2020-04-26 …
已知直线l经过3x+4y-2=0与直线2x+y+2=0的交点P,且垂直于直线x-2y-1=0 求直 2020-05-16 …
已知圆M的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆M的 2020-06-09 …
已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.(1)若直线l过点P且与圆心C的距离为1 2020-06-12 …
已知圆M的方程为x^2+(y-2)^2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆 2020-06-14 …
已知两直线L1L2的方程分别为x+2y=0和x-2y=o,动点p在L1L2上方所夹区域内,且p到两 2020-07-04 …
过点p(3.4)的直线l在y轴上的截距为71求直线l的方程,2求过o(5,0)且和直线l平过点p( 2020-07-30 …
设直线l1:y=2x与直线l2:x+y=3交于P点.(1)当直线m过P点,且与直线l0:x-2y= 2020-07-30 …
向量的垂直题:设直线n和直线m的斜率为k和p,则直线n有方向向量a=(1,k).直线m有方向向量b 2020-08-02 …
已知点P(1,1)为椭圆C:x^2/9+y^2/4=1内一定点,过点P的弦AB在点P被平分,求弦AB 2020-11-27 …