早教吧作业答案频道 -->数学-->
如图:已知△ABC是等边三角形,D、E、F分别是AB、AC、BC边的中点,M是直线BC上的任意一点,在射线EF上截取EN,使EN=FM,连接DM、MN、DN.(1)如图①,当点M在点B左侧时,请你按已知要求补全
题目详情
如图:已知△ABC是等边三角形,D、E、F分别是AB、AC、BC边的中点,M是直线BC上的任意一点,在射线EF上截取EN,使EN=FM,连接DM、MN、DN.
(1)如图①,当点M在点B左侧时,请你按已知要求补全图形,并判断△DMN是怎样的特殊三角形(不要求证明);
(2)请借助图②解答:当点M在线段BF上(与点B、F不重合),其它条件不变时,(1)中的结论是否依然成立?若成立,请证明;若不成立,请说明理由;
(3)请借助图③解答:当点M在射线FC上(与点F不重合),其它条件不变时,(1)中的结论是否仍然成立?不要求证明.
(1)如图①,当点M在点B左侧时,请你按已知要求补全图形,并判断△DMN是怎样的特殊三角形(不要求证明);
(2)请借助图②解答:当点M在线段BF上(与点B、F不重合),其它条件不变时,(1)中的结论是否依然成立?若成立,请证明;若不成立,请说明理由;
(3)请借助图③解答:当点M在射线FC上(与点F不重合),其它条件不变时,(1)中的结论是否仍然成立?不要求证明.
▼优质解答
答案和解析
(1)如图①,
△DMN是等边三角形.
(2)如图②,当M在线段BF上(与点B、F重合)时,△DMN仍是等边三角形.
证明:连接DF,
∵△ABC是等边三角形,
∴∠ABC=60°,AB=AC=BC.
∵D、E、F分别是△ABC三边的中点,
∴DE、DF、EF是等边三角形的中位线.
∴DF=
AC,BD=
AB,EF=
AB,BF=
BC.
∴∠BDF=∠A=∠DFE=60°,DF=BF=EF,
∴∠ABC=∠DFE,
∵FM=EN,
∴BM=NF,
∴△BDM≌△FDN,
∴∠BDM=∠FDN,MD=ND,
∴∠BDM+∠MDF=∠FDN+∠MDF=∠MDN=60°,
△DMN是等边三角形;
(3)如图③或图④,当点M在射线FC上(与点F不重合)时,(1)中的结论不成立,
即△DMN不是等边三角形.
△DMN是等边三角形.
(2)如图②,当M在线段BF上(与点B、F重合)时,△DMN仍是等边三角形.
证明:连接DF,
∵△ABC是等边三角形,
∴∠ABC=60°,AB=AC=BC.
∵D、E、F分别是△ABC三边的中点,
∴DE、DF、EF是等边三角形的中位线.
∴DF=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴∠BDF=∠A=∠DFE=60°,DF=BF=EF,
∴∠ABC=∠DFE,
∵FM=EN,
∴BM=NF,
∴△BDM≌△FDN,
∴∠BDM=∠FDN,MD=ND,
∴∠BDM+∠MDF=∠FDN+∠MDF=∠MDN=60°,
△DMN是等边三角形;
(3)如图③或图④,当点M在射线FC上(与点F不重合)时,(1)中的结论不成立,
即△DMN不是等边三角形.
看了 如图:已知△ABC是等边三角...的网友还看了以下:
有5行5列25个格子,每个格子里放一个字母,要求B旁边必须有A.C旁边必须有B和A.D旁边必须有C 2020-05-13 …
三角形的面积公式是什么?三角形公式不是(底乘高)/2吗?为什么又有s=((d-a)(d-b)(d- 2020-05-13 …
四边形的四条边分别为a,b,c,d,其中a,c为对边,且满足a平方+b平方+c平方=2ab+2cd 2020-05-15 …
四边形ABCD相似四边形A’B'C'D',而且AB:BC:CD:DA=1:1/2:2/3:2,若四 2020-06-03 …
四边形四边长顺次为a、b、c、d,且满足a方+b方+c方+d方=2(ab+cd),则这个四边形一点 2020-06-13 …
如图,把四边形ABCD的各边都延长一倍至A′B′C′D′,连接这些点得新四边形A′B′C′D′,若 2020-06-13 …
初中相似几何题一道已知四边形ABCD∽四边形A'B'C'D',它们的周长分别为90cm,72cm, 2020-06-20 …
已知四边形ABCD的四条边长分别为a,b,c,d,其中a,b为对边,且a2+b2+c2+d2=2a 2020-07-09 …
已知四边形ABCD的四条边长分别为a,b,c,d,其中a,b为对边,且a2+b2+c2+d2=2a 2020-07-09 …
已知四边形ABCD的四条边长分别为a,b,c,d,其中a,b为对边,且a2+b2+c2+d2=2ab 2020-10-31 …