早教吧作业答案频道 -->数学-->
关于圆的相关知识规律.如:切割线定理,弦切角定理等.越多越好!
题目详情
关于圆的相关知识规律.如:切割线定理,弦切角定理等.越多越好!
▼优质解答
答案和解析
〖有关圆的基本性质与定理〗
圆的确定:不在同一直线上的三个点确定一个圆.
圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆也是中心对称图形,其对称中心是圆心.
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
〖有关圆周角和圆心角的性质和定理〗
在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等.
一条弧所对的圆周角等于它所对的圆心角的一半.
直径所对的圆周角是直角.90度的圆周角所对的弦是直径.
〖有关外接圆和内切圆的性质和定理〗
一个三角形有唯一确定的外接圆和内切圆.外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等.
〖有关切线的性质和定理〗
圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线.
切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.
切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线.(2)经过切点垂直于切线的直线必经过圆心.(3)圆的切线垂直于经过切点的半径.
切线的长定理:从圆外一点到圆的两条切线的长相等.
〖有关圆的计算公式〗
1.圆的周长C=2πr=πd 2.圆的面积S=πr² 3.扇形弧长l=nπr/180
4.扇形面积S=nπr²/360=rl/2 5.圆锥侧面积S=πrl
【圆的解析几何性质和定理】
〖圆的解析几何方程〗
圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2.
圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0.和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2.
圆的离心率e=0,在圆上任意一点的曲率半径都是r.
〖圆与直线的位置关系判断〗
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交.
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切.
如果b^2-4ac
圆的确定:不在同一直线上的三个点确定一个圆.
圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆也是中心对称图形,其对称中心是圆心.
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
〖有关圆周角和圆心角的性质和定理〗
在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等.
一条弧所对的圆周角等于它所对的圆心角的一半.
直径所对的圆周角是直角.90度的圆周角所对的弦是直径.
〖有关外接圆和内切圆的性质和定理〗
一个三角形有唯一确定的外接圆和内切圆.外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等.
〖有关切线的性质和定理〗
圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线.
切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.
切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线.(2)经过切点垂直于切线的直线必经过圆心.(3)圆的切线垂直于经过切点的半径.
切线的长定理:从圆外一点到圆的两条切线的长相等.
〖有关圆的计算公式〗
1.圆的周长C=2πr=πd 2.圆的面积S=πr² 3.扇形弧长l=nπr/180
4.扇形面积S=nπr²/360=rl/2 5.圆锥侧面积S=πrl
【圆的解析几何性质和定理】
〖圆的解析几何方程〗
圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2.
圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0.和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2.
圆的离心率e=0,在圆上任意一点的曲率半径都是r.
〖圆与直线的位置关系判断〗
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交.
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切.
如果b^2-4ac
看了 关于圆的相关知识规律.如:切...的网友还看了以下:
高数中有没有记忆导数的方法像正切余切正割余割反三角 2020-05-13 …
“政治自由就是人们能够无拘无束,想干什么就干什么。”这种观点①认为自由是绝对的②认为自由离不开法律 2020-06-22 …
以及大学所学的一切关,于电的知识和定律,都可以通过麦克斯韦方程组得到验证吗?比如欧姆定律,串并联定 2020-07-02 …
关于三角函数三角函数除了正弦,余弦,正切,余切,正割,余割外,还有正矢,正矢,余矢是什么? 2020-07-02 …
圆的切线割线方程若有一点A(x0,y0),圆(x-a)^2+(y-b)^2=r^2直线过A与圆相切 2020-07-22 …
直线与圆的位置关系有哪些?相切,相交,相离还是相切,相割,相离? 2020-07-26 …
什么是正弦,余弦,正切,余切,正割,余割?具体详细点 2020-07-30 …
直角三角函数中正弦余弦正切余切正割余割他们在直角三角形中作用是什么? 2020-07-30 …
有关双曲函数正弦双曲函数,余弦双曲函数,正切,余切,正割,余割双曲函数的导数分别是什么?图像是什么 2020-07-30 …
“政治自由就是人们能够无拘无束,想干什么就干什么。”与此观点不符的是A.认为自由是绝对的B.认为可以 2020-11-08 …