早教吧作业答案频道 -->数学-->
(2014•汕尾)如图,已知抛物线y=38x2-34x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等
题目详情
(2014•汕尾)如图,已知抛物线y=
x2-
x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.
(1)直接写出A、D、C三点的坐标;
(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;
(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.
3 |
8 |
3 |
4 |
(1)直接写出A、D、C三点的坐标;
(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;
(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵y=
x2-
x-3,
∴当y=0时,
x2-
x-3=0,
解得x1=-2,x2=4.
当x=0,y=-3.
∴A点坐标为(4,0),D点坐标为(-2,0),C点坐标为(0,-3);
(2)∵y=
x2-
x-3,
∴对称轴为直线x=
=1.
∵AD在x轴上,点M在抛物线上,
∴当△MAD的面积与△CAD的面积相等时,分两种情况:
①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,
∵C点坐标为(0,-3),
∴M点坐标为(2,-3);
②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.
当y=3时,
x2-
x-3=3,
解得x1=1+
,x2=1-
,
∴M点坐标为(1+
,3)或(1-
,3).
综上所述,所求M点坐标为(2,-3)或(1+
3 |
8 |
3 |
4 |
∴当y=0时,
3 |
8 |
3 |
4 |
解得x1=-2,x2=4.
当x=0,y=-3.
∴A点坐标为(4,0),D点坐标为(-2,0),C点坐标为(0,-3);
(2)∵y=
3 |
8 |
3 |
4 |
∴对称轴为直线x=
| ||
2×
|
∵AD在x轴上,点M在抛物线上,
∴当△MAD的面积与△CAD的面积相等时,分两种情况:
①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,
∵C点坐标为(0,-3),
∴M点坐标为(2,-3);
②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.
当y=3时,
3 |
8 |
3 |
4 |
解得x1=1+
17 |
17 |
∴M点坐标为(1+
17 |
17 |
综上所述,所求M点坐标为(2,-3)或(1+
作业帮用户
2017-10-18
|
看了 (2014•汕尾)如图,已知...的网友还看了以下:
抛物线y=x的平方向下平移后,设他与x轴的两个交点分别位A B 且抛物线的顶点为C抛物线y=x的平 2020-05-16 …
抛物线y=x^2+bx-c经过点A(3,0)、B(0,-3).求抛物线的函数关系式记抛物线的顶点为 2020-06-14 …
某人从离地某高度处抛出一个质量为m的物体,他抛物体时对物体所做的功为W,该物体落地时的速度大小为v 2020-06-16 …
若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=-2x2+4x+2与C2:u2 2020-06-30 …
(2014•沭阳县模拟)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以这两个 2020-07-14 …
如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物 2020-07-26 …
如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以这两个交点和该抛物线的顶点、对 2020-07-29 …
如图,抛物线F:y=ax^2+bx+c的顶点为P,抛物线与y轴交于点A,与直线OP交于点B,过点P 2020-07-29 …
如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点 2020-11-01 …
(2014•房山区二模)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线 2020-11-11 …