早教吧作业答案频道 -->数学-->
如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合)我们把这样的两抛物线L1、L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很
题目详情
如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合)我们把这样的两抛物线L1、L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.
(1)如图2,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;
(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;
(3)若抛物y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.
(1)如图2,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;
(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;
(3)若抛物y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.
▼优质解答
答案和解析
(1)∵抛物线L3:y=2x2-8x+4,
∴y=2(x-2)2-4,
∴顶点为(2,4),对称轴为x=2,
设x=0,则y=4,
∴C(0,4),
∴点C关于该抛物线对称轴对称的对称点D的坐标为:(4,4);
(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),
∴L4的解析式为y=-2(x-4)2+4,
∴L3与L4中y同时随x增大而增大的自变量的取值范围是:2≤x≤4时;
(3)a1=-a2,
理由如下:
∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,
∴可以列出两个方程
,
①+②得:
(a1+a2 )(m-h)2=0,
∴a1=-a2,
∴y=2(x-2)2-4,
∴顶点为(2,4),对称轴为x=2,
设x=0,则y=4,
∴C(0,4),
∴点C关于该抛物线对称轴对称的对称点D的坐标为:(4,4);
(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),
∴L4的解析式为y=-2(x-4)2+4,
∴L3与L4中y同时随x增大而增大的自变量的取值范围是:2≤x≤4时;
(3)a1=-a2,
理由如下:
∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,
∴可以列出两个方程
|
①+②得:
(a1+a2 )(m-h)2=0,
∴a1=-a2,
看了 如图1,若抛物线L1的顶点A...的网友还看了以下:
求一篇关于车窗抛物不良现象的120字英语作文!有厚赏! 2020-03-29 …
忘光光.抛物线的平面直接坐标系多少个点确定一条抛物线,任意三点不共线多少个点确定一条对称轴和y轴平 2020-06-14 …
(2014•江西模拟)如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1 2020-06-15 …
高空抛物不仅是不文明的行为,而且还会造成许多安全隐患,给他人的人身安全造成极大威胁.对此《中华人民 2020-07-20 …
如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合) 2020-07-26 …
对于抛物线y=x2与y=-x2,下列命题中错误的是()A.两条抛物线关于x轴对称B.两条抛物线关于 2020-07-26 …
如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点 2020-11-01 …
(2014•淮北模拟)城市文明宣传栏中记述着:“某高楼大厦发生高空抛物不文明行为,一位老太太被抛下的 2020-11-11 …
(2003•绵阳)若点P(t,t)在抛物线上,则点P叫做抛物线的不动点.设抛物线y=ax2+x+2经 2020-11-12 …
2012年10月,车窗抛物威胁环卫工人生命安全问题经媒体报道后,武汉市城市管理局等部门迅速出台了《关 2020-12-01 …