早教吧作业答案频道 -->数学-->
已知抛物线y=-x2-(m-4)x+3(m-1)与x轴交于A、B两点,与y轴交于C点.(1)求m的取值范围;(2)若m≤0,直线y=kx-1,经过点A,与y轴交于点D,且AD×BD=25,求抛物线的解析式;(3)若点A在点B的
题目详情
已知抛物线y=-x2-(m-4)x+3(m-1)与x轴交于A、B两点,与y轴交于C点.
(1)求m的取值范围;
(2)若m≤0,直线y=kx-1,经过点A,与y轴交于点D,且AD×BD=2
,求抛物线的解析式;
(3)若点A在点B的左边,在第一象限内,(2)中所得抛物线上是否存在一点P,使直线PA平分△ACD的面积?若存在,求出P点坐标,若不存在,请说明理由.
(1)求m的取值范围;
(2)若m≤0,直线y=kx-1,经过点A,与y轴交于点D,且AD×BD=2
5 |
(3)若点A在点B的左边,在第一象限内,(2)中所得抛物线上是否存在一点P,使直线PA平分△ACD的面积?若存在,求出P点坐标,若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵抛物线与x轴有两个不同的交点,
∴△=(m-4)2+12(m-1)=m2+4m+4=(m+2)2>0,
∴m≠-2.
(2)∵y=-x2-(m-4)x+3(m-1)=-(x-3)(x+m-1),
∴抛物线与x轴的两个交点为:(3,0),(1-m,0);
易知D(0,-1),则有:
AD×BD=
×
=2
,
∴10×(m2-2m+2)=20,
即m2-2m=0,
解得m=0,m=2(舍去),
∴抛物线的解析式为:y=-x2+4x-3.
(3)若点A在点B左侧,则:A(1,0),B(3,0),C(0,-3);
假设存在符合题意的P点,设直线PA与y轴的交点为E,
若AE平分△DAC的面积,
则有:DE=CE,即E(0,-2);
∴直线AE的解析式为:y=2x-2;
联立抛物线的解析式有
,
解得
;
即直线AE与抛物线只有一个交点A,因此不存在符合条件的P点.
∴△=(m-4)2+12(m-1)=m2+4m+4=(m+2)2>0,
∴m≠-2.
(2)∵y=-x2-(m-4)x+3(m-1)=-(x-3)(x+m-1),
∴抛物线与x轴的两个交点为:(3,0),(1-m,0);
易知D(0,-1),则有:
AD×BD=
32+12 |
(1−m)2+12 |
5 |
∴10×(m2-2m+2)=20,
即m2-2m=0,
解得m=0,m=2(舍去),
∴抛物线的解析式为:y=-x2+4x-3.
(3)若点A在点B左侧,则:A(1,0),B(3,0),C(0,-3);
假设存在符合题意的P点,设直线PA与y轴的交点为E,
若AE平分△DAC的面积,
则有:DE=CE,即E(0,-2);
∴直线AE的解析式为:y=2x-2;
联立抛物线的解析式有
|
解得
|
即直线AE与抛物线只有一个交点A,因此不存在符合条件的P点.
看了 已知抛物线y=-x2-(m-...的网友还看了以下:
已知直线y=1/3x+2与y轴交于点A,与x轴交于点B,直线l经过点A,坐标原点为O点,把三角形A 2020-05-16 …
已知直线y=kx+b与y=3x平行,与y=1/2x+2交于Y轴上一点,则K= ,B= 直线的解析式 2020-05-16 …
已知直线y=2x+6与x轴y轴交于A、B两点,直线L经过原点与线段AB交于点C,把△ABO的面积分 2020-06-23 …
如图,已知直线y=1/2x与双曲线y=k/x(k>0)交于A,B两点,且点A的横坐标为4如图,已知 2020-08-01 …
如图,已知直线y=1/2x与双曲线y=k/x(k>0)交于A.B两点,且点A的横坐标为4,不能用点 2020-08-01 …
如图,已知直线y=1/2x与双曲线y=k/x(k>0)交于A.B两点,且点A的横坐标为4如图,已知 2020-08-01 …
如图,已知直线y=12x与双曲线y=kx(k>0)交于A,B两点,且点A的横坐标为4.如图,已知直 2020-08-01 …
因式分解25x^2-4y^2(x+y)^2-6z(x+y)+9Z^2若a(x^my^4)/(3x^2 2020-10-31 …
已知直线y=x-2,y=-x+2.(1)这两条直线与y轴围成什么形状的图形?(2)如果这两条直线相交 2020-11-01 …
求你帮我做道函数题行么?还没学,已知直线y=kx+b过点A(-1,5),且平行于直线y=-x已知直线 2020-12-26 …