早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知抛物线y=-x2-(m-4)x+3(m-1)与x轴交于A、B两点,与y轴交于C点.(1)求m的取值范围;(2)若m≤0,直线y=kx-1,经过点A,与y轴交于点D,且AD×BD=25,求抛物线的解析式;(3)若点A在点B的

题目详情
已知抛物线y=-x2-(m-4)x+3(m-1)与x轴交于A、B两点,与y轴交于C点.
(1)求m的取值范围;
(2)若m≤0,直线y=kx-1,经过点A,与y轴交于点D,且AD×BD=2
5
,求抛物线的解析式;
(3)若点A在点B的左边,在第一象限内,(2)中所得抛物线上是否存在一点P,使直线PA平分△ACD的面积?若存在,求出P点坐标,若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵抛物线与x轴有两个不同的交点,
∴△=(m-4)2+12(m-1)=m2+4m+4=(m+2)2>0,
∴m≠-2.
(2)∵y=-x2-(m-4)x+3(m-1)=-(x-3)(x+m-1),
∴抛物线与x轴的两个交点为:(3,0),(1-m,0);
易知D(0,-1),则有:
AD×BD=
32+12
×
(1−m)2+12
=2
5

∴10×(m2-2m+2)=20,
即m2-2m=0,
解得m=0,m=2(舍去),
∴抛物线的解析式为:y=-x2+4x-3.
(3)若点A在点B左侧,则:A(1,0),B(3,0),C(0,-3);
假设存在符合题意的P点,设直线PA与y轴的交点为E,
若AE平分△DAC的面积,
则有:DE=CE,即E(0,-2);
∴直线AE的解析式为:y=2x-2;
联立抛物线的解析式有
y=−x2+4x−3
y=2x−2

解得
x=1
y=0

即直线AE与抛物线只有一个交点A,因此不存在符合条件的P点.