早教吧作业答案频道 -->数学-->
锐角三角形中,b/a+a/b=6cosC,求tanC/tanA+tanC/tanB的值
题目详情
锐角三角形中,b/a+a/b=6cosC,求 tanC/tanA+tanC/tanB的值
▼优质解答
答案和解析
tanC/tanA+tanC/tanB
=(ccosA/a+ccosB/b)/cosC
=c^2/abcosC
=(a^2+b^2-2abcosC)/abcosC
=(a^2+b^2)/abcosC -2
b/a+a/b=6cosC
(a^2+b^2)/abcosC=6
tanC/tanA+tanC/tanB
=(a^2+b^2)/abcosC -2
=4
=(ccosA/a+ccosB/b)/cosC
=c^2/abcosC
=(a^2+b^2-2abcosC)/abcosC
=(a^2+b^2)/abcosC -2
b/a+a/b=6cosC
(a^2+b^2)/abcosC=6
tanC/tanA+tanC/tanB
=(a^2+b^2)/abcosC -2
=4
看了 锐角三角形中,b/a+a/b...的网友还看了以下: