早教吧作业答案频道 -->其他-->
如图,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A、B两点,连接PA并延长,交圆O于点C,连续PB交圆O于点D,若MC=BC.(1)求证:△APM∽△ABP;(2)求证:
题目详情
如图,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A、B两点,连接PA并延长,交圆O于点C,连续PB交圆O于点D,若MC=BC.
(1)求证:△APM∽△ABP;
(2)求证:四边形PMCD是平行四边形.
(1)求证:△APM∽△ABP;
(2)求证:四边形PMCD是平行四边形.
▼优质解答
答案和解析
证明:(Ⅰ)∵PM是圆O的切线,NAB是圆O的割线,N是PM的中点,
∴MN2=PN2=NA•NB,
∴
=
,
又∵∠PNA=∠BNP,
∴△PNA∽△BNP,
∴∠APN=∠PBN,即∠APM=∠PBA,.
∵MC=BC,
∴∠MAC=∠BAC,
∴∠MAP=∠PAB,
∴△APM∽△ABP…(5分)
(Ⅱ)∵∠ACD=∠PBN,
∴∠ACD=∠PBN=∠APN,即∠PCD=∠CPM,
∴PM∥CD.
∵△APM∽△ABP,
∴∠PMA=∠BPA
∵PM是圆O的切线,
∴∠PMA=∠MCP,
∴∠PMA=∠BPA=∠MCP,即∠MCP=∠DPC,
∴MC∥PD,
∴四边形PMCD是平行四边形.…(10分)
∴MN2=PN2=NA•NB,
∴
PN |
NB |
NA |
PN |
又∵∠PNA=∠BNP,
∴△PNA∽△BNP,
∴∠APN=∠PBN,即∠APM=∠PBA,.
∵MC=BC,
∴∠MAC=∠BAC,
∴∠MAP=∠PAB,
∴△APM∽△ABP…(5分)
(Ⅱ)∵∠ACD=∠PBN,
∴∠ACD=∠PBN=∠APN,即∠PCD=∠CPM,
∴PM∥CD.
∵△APM∽△ABP,
∴∠PMA=∠BPA
∵PM是圆O的切线,
∴∠PMA=∠MCP,
∴∠PMA=∠BPA=∠MCP,即∠MCP=∠DPC,
∴MC∥PD,
∴四边形PMCD是平行四边形.…(10分)
看了 如图,已知圆O外有一点P,作...的网友还看了以下:
已知一直线l1过点a(-1,0)且斜率为k,直线l2:过点b(1,0)且斜率为-2/k,直线l1与l 2020-03-30 …
在正方形ABCD中,对角线AC,BD相交于点O,点Q是CD上任意一点,DP⊥AQ交BC于点P.求证 2020-05-16 …
如图,抛物线y=ax的平方+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.( 2020-05-16 …
直线y=(-根号3)x+4根号3与x轴相交于点A,与直线y=(根号3/3)x相交于点P.直线y=( 2020-05-23 …
已知:y关于x的函数y=(k-1)^2-2kx+k+2的图像与x轴有交点.(1)求k的取值范围(2 2020-06-12 …
在平面直角坐标系中,已知点A(1/2,0),点B在直线l:x=-1/2上运动,过点B与l垂直的直线 2020-08-01 …
2次函数Y=1/4X^2-5/2X+6的图像与X轴从左到右两个交点依次为A、B,与Y轴交于点C12次 2020-11-01 …
如何,直线y=2x十3与x轴相交于点A,与y轴交于点p.(1)求A,B两点的坐标过B点作直线B如何, 2020-11-04 …
三角函数习题1.正弦函数的一个最高点为(1/4,3),从相邻的最高点的图像交X轴于点(-1/4,0) 2020-11-24 …
已知椭圆C:x2/a2+y2/b2=1的离心率为根号3/2,直线x-y+1=0经过椭圆C的上顶点,直 2021-01-13 …