早教吧作业答案频道 -->数学-->
若T(n)=(1/n)+(1/n+2)+(1/n+3)…+1/2n,则T(n+1)=
题目详情
若T(n)=(1/n)+(1/n+2)+(1/n+3)…+1/2n,则 T(n+1)=
▼优质解答
答案和解析
若T(n)=(1/n)+(1/n+2)+(1/n+3)…+1/2n,
则 T(n+1)=[1/(n+1)]+[1/(n+1)+2]+[1/(n+1)+3]…+[1/2(n+1)]
=(1/n+1)+1/(n+3)+...+1/(2n+1)+1/(2n+2)
则 T(n+1)=[1/(n+1)]+[1/(n+1)+2]+[1/(n+1)+3]…+[1/2(n+1)]
=(1/n+1)+1/(n+3)+...+1/(2n+1)+1/(2n+2)
看了 若T(n)=(1/n)+(1...的网友还看了以下: