早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知AD为△ABC的高线,AD=BC,以AB为底边作等腰Rt△ABE,连接ED,EC,延长CE交AD于F点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()A.①③B.①②

题目详情

如图,已知AD为△ABC的高线,AD=BC,以AB为底边作等腰Rt△ABE,连接ED,EC,延长CE交AD于F点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有(  )
作业帮

A. ①③

B. ①②④

C. ①②③④

D. ①③④

▼优质解答
答案和解析
①∵AD为△ABC的高线,
∴∠作业帮CBE+∠ABE+∠BAD=90°,
∵Rt△ABE是等腰直角三角形,
∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,
∴∠CBE+∠BAD=45°,
∴∠DAE=∠CBE,
在△DAE和△CBE中,
AE=BE
∠DAE=∠CBE
AD=BC

∴△ADE≌△BCE(SAS);
故①正确;
②∵△ADE≌△BCE,
∴∠EDA=∠ECB,
∵∠ADE+∠EDC=90°,
∴∠EDC+∠ECB=90°,
∴∠DEC=90°,
∴CE⊥DE;
故②正确;
③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,
∴∠BDE=∠AFE,
∵∠BED+∠BEF=∠AEF+∠BEF=90°,
∴∠BED=∠AEF,
在△AEF和△BED中,
∠BDE=∠AFE
∠BED=∠AEF
AE=BE

∴△AEF≌△BED(AAS),
∴BD=AF;
故③正确;
④∵AD=BC,BD=AF,
∴CD=DF,
∵AD⊥BC,
∴△FDC是等腰直角三角形,
∵DE⊥CE,
∴EF=CE,
∴S△AEF=S△ACE
∵△AEF≌△BED,
∴S△AEF=S△BED
∴S△BDE=S△ACE
故④正确;
故选C.
看了 如图,已知AD为△ABC的高...的网友还看了以下: